CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光诱导纳米金刚石薄膜表面周期性结构的摩擦学性能研究

崔雨潇 马家豪 阎兵 戚厚军 蔡玉俊

崔雨潇, 马家豪, 阎兵, 戚厚军, 蔡玉俊. 飞秒激光诱导纳米金刚石薄膜表面周期性结构的摩擦学性能研究[J]. 金刚石与磨料磨具工程, 2022, 42(4): 433-441. doi: 10.13394/j.cnki.jgszz.2022.0063
引用本文: 崔雨潇, 马家豪, 阎兵, 戚厚军, 蔡玉俊. 飞秒激光诱导纳米金刚石薄膜表面周期性结构的摩擦学性能研究[J]. 金刚石与磨料磨具工程, 2022, 42(4): 433-441. doi: 10.13394/j.cnki.jgszz.2022.0063
CUI Yuxiao, MA Jiahao, YAN Bing, QI Houjun, CAI Yujun. Investigation on tribological performance of LIPSS-structured nano-crystalline diamond films[J]. Diamond & Abrasives Engineering, 2022, 42(4): 433-441. doi: 10.13394/j.cnki.jgszz.2022.0063
Citation: CUI Yuxiao, MA Jiahao, YAN Bing, QI Houjun, CAI Yujun. Investigation on tribological performance of LIPSS-structured nano-crystalline diamond films[J]. Diamond & Abrasives Engineering, 2022, 42(4): 433-441. doi: 10.13394/j.cnki.jgszz.2022.0063

飞秒激光诱导纳米金刚石薄膜表面周期性结构的摩擦学性能研究

doi: 10.13394/j.cnki.jgszz.2022.0063
基金项目: 国家自然科学基金(51705359)。
详细信息
    作者简介:

    崔雨潇,男,1988年 生,博士、讲师。主要研究方向:超快激光微细制造及超硬涂层开发与应用。E-mail: erplayer@163.com

    通讯作者:

    戚厚军,男,1972年生,博士、教授。主要研究方向:高效高精加工及模具智能制造技术。E-mail: qihoujun@tute.edu.cn

  • 中图分类号: TQ164

Investigation on tribological performance of LIPSS-structured nano-crystalline diamond films

  • 摘要: 研究基于飞秒激光辐照方法在纳米金刚石(nano-crystalline diamond, NCD)薄膜表面制备的激光诱导周期性结构(laser-induced periodic surface structures, LIPSS)的摩擦学行为。在空气环境下采用脉冲宽度为200 fs,中心波长为1040 nm的掺镱光子晶体光纤飞秒激光辐照NCD薄膜表面产生LIPSS。基于不同的扫描间隔制备2种LIPSS表面,即连续分布的LIPSS表面(continuously distributed LIPSS, CDL)和均匀间隔的LIPSS带状表面(evenly spaced LIPSS stripes, ESLS)。通过球盘式摩擦磨损试验机进行往复式干摩擦试验来对上述2种LIPSS表面的摩擦学性能进行表征,其中的对磨球为ZrO2陶瓷材质。往复式摩擦试验采用了平行和垂直于LIPSS纹理的2种摩擦方向。研究结果表明:施加LIPSS后的NCD薄膜表面容屑能力得到改善,同时摩擦接触面积降低,因而相比于原始NCD薄膜,其摩擦系数明显降低;对于CDL表面,摩擦方向与LIPSS纹理垂直时的摩擦系数比纹理平行时的更高;ESLS表面的LIPSS纹理方向对摩擦系数无影响。

     

  • 图  1  飞秒激光辐照工艺流程图

    Figure  1.  Scheme of fs laser irradiation on NCD films

    图  2  制备试样的表面形貌

    Figure  2.  Morphologies of as-fabricated NCD specimens

    图  3  制备试样的拉曼光谱

    Figure  3.  Micro-Raman spectra of as-fabricated

    图  4  制备试样的磨损表面及能谱分析

    Figure  4.  Worn surfaces and local EDX analysis of specimens

    图  5  制备试样的摩擦系数曲线

    Figure  5.  Friction coefficient curves of as-fabricated specimens

    图  6  制备试样的磨损表面轮廓

    Figure  6.  Cross-sectional profiles of all examined worn surfaces of specimens

    图  7  LIPSS试样的摩擦机理示意图

    Figure  7.  Schematic description of the friction process

    表  1  NCD薄膜沉积工艺参数

    Table  1.   Deposition parameters of NCD films

    参数形核生长
    气压 p / kPa0.1600.067
    流量 V / sccm300300
    甲烷/氢气体积比1%1%
    热丝间距 d / mm1010
    热丝温度 θf / ℃2100±2002100±200
    衬底温度 θs / ℃900±50900±50
    偏压电流密度 i / (A·cm−2)0.10.1
    沉积时长 t / h0.53.5
    注:① sccm为standard cubic centimeter per minute的简称,1 sccm即每分钟流过标准状态下的气体体积为1 cm3
    下载: 导出CSV

    表  2  飞秒激光辐照工艺参数

    Table  2.   Laser specifications used for fs laser irradiation

    参数数值或规格
    波长 λ / nm1040
    脉冲能量 Q / nJ0.8
    脉冲宽度 W / fs200
    重复频率 f / kHz500
    光斑直径 d / μm10
    能量密度 p / (J·cm−2)5.1
    规格Linear
    下载: 导出CSV

    表  3  表面粗糙度测试及摩擦试验试样汇总

    Table  3.   Summary of the used specimens in surface roughness and friction tests

    名称表面处理探针运动方向/摩擦方向
    F1未处理NCD 
    F2CDL表面平行于LIPSS纹理方向
    F3CDL表面垂直于LIPSS纹理方向
    F4ESLS表面平行于LIPSS纹理方向
    F5ESLS表面垂直于LIPSS纹理方向
    下载: 导出CSV

    表  4  NCD试样拉曼光谱参数[20-23]

    Table  4.   Raman parameters for NCD specimens [20-23]

    试样峰编号拉曼位移 λ / (cm−1)成分FWHM / (cm−1)相对强度 I / %ID /IGITPA/IG金刚石相含量Cd / %
    Peak 11182.13反式聚乙炔 (TPA)156.8715.141.120.4823.27
    Peak 21258.67非晶相金刚石 81.87 2.45
    原始Peak 31335.38多晶金刚石 7.87 0.13
    NCDPeak 41345.19非晶碳(D mode)134.9935.43
    Peak 51460.76反式聚乙炔 (TPA) 98.8415.36
    Peak 61564.61石墨(G mode)124.2831.48
    LIPSSPeak 11155.92反式聚乙炔 (TPA)111.7910.521.360.3229.58
    Peak 21232.71非晶相金刚石 64.61 2.12
    Peak 31336.01多晶金刚石 10.77 0.18
    Peak 41342.86非晶碳(D mode)163.7144.23
    Peak 51463.44反式聚乙炔 (TPA) 83.9510.50
    Peak 61558.62石墨(G mode)128.8732.44
    下载: 导出CSV
  • [1] LIN T, YU G, WEE A, et al. Compositional mapping of the argon–methane–hydrogen system for polycrystalline to nanocrystalline diamond film growth in a hot-filament chemical vapor deposition system [J]. Applied Physics Letters,2000,77:2962-2964.
    [2] 王学根, 孙方宏, 张志明, 等. 纳米金刚石薄膜研究进展 [J]. 金刚石与磨料磨具工程,2003(5):1-7. doi: 10.3969/j.issn.1006-852X.2003.05.001

    WANG Xuegen, SUN Fanghong, ZHANG Zhiming, et al. Progress of the researches on nanocrystalline diamond film [J]. Diamond & Abrasives Engineering,2003(5):1-7. doi: 10.3969/j.issn.1006-852X.2003.05.001
    [3] 刘素田, 唐伟忠, 耿春雷, 等. 纳米金刚石薄膜的制备和应用 [J]. 金刚石与磨料磨具工程,2006(1):75-79. doi: 10.3969/j.issn.1006-852X.2006.01.021

    LIU Sutian, TANG Weizhong, GENG Chunlei, et al. Preparation and application of nanocrystalline diamond films [J]. Diamond & Abrasives Engineering,2006(1):75-79. doi: 10.3969/j.issn.1006-852X.2006.01.021
    [4] AMARAL M, CARREIRA D, FERNANDES A, et al. A DLC/diamond bilayer approach for reducing the initial friction towards a high bearing capacity [J]. Wear,2012,290/291:18-24. doi: 10.1016/j.wear.2012.05.026
    [5] OBIKAWA T, KAMIO A, TAKAOKA H, et al. Micro-texture at the coated tool face for high performance cutting [J]. International Journal of Machine Tools & Manufacture,2011,51:966-972.
    [6] NAKANO M, MIYAKE K, KORENAGA A, et al. Tribological properties of patterned NiFe-covered Si surfaces [J]. Tribology Letters,2009,35:133-139. doi: 10.1007/s11249-009-9442-6
    [7] SUI T, CUI Y, LIN B, et al. Influence of nanosecond laser processed surface textures on the tribological characteristics of diamond films sliding against zirconia bioceramic [J]. Ceramic International,2018,44:23137-23144. doi: 10.1016/j.ceramint.2018.09.122
    [8] SATORI S, ORLANDO S, BELLUCCI A, et al. Laser-induced periodic surface structures (LIPSS) on heavily boron-doped diamond for electrode applications [J]. ACS Applied Materials & Interfaces,2018,10:43236-43251.
    [9] VOROBYEV A, GUO C. Colorizing metals with femtosecond laser pulses [J]. Applied Physics Letters,2008,92:041914. doi: 10.1063/1.2834902
    [10] CUNHA A, SERRO A, OLIVEIRA V, et al. Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces [J]. Applied Surface Science,2013,265:688-696. doi: 10.1016/j.apsusc.2012.11.085
    [11] VOYER J, KLIEN S, AUSSERER F, et al. Friction reduction through sub-micron laser surface modifications [J]. Tribologie und Schmierungstechnik,2015,62:13-18.
    [12] BONSE J, KOTER R, HARTELT M, et al. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications [J]. Applied Physics A,2014,117:103-110. doi: 10.1007/s00339-014-8229-2
    [13] BONSE J, HOHM S, KOTER R, et al. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium [J]. Applied Surface Science,2016,374:190-196. doi: 10.1016/j.apsusc.2015.11.019
    [14] OGAWA Y, OTA M, NAKAMOTO K, et al. A study on machining of binder-less polycrystalline diamond by femtosecond pulsed laser for fabrication of micro milling tools [J]. CIRP Annals-Manufacturing Technology,2016,65:245-248. doi: 10.1016/j.cirp.2016.04.081
    [15] HUYNH T, SEMMAR N. Dependence of ablation threshold and LIPSS formation on copper thin films by accumulative UV picosecond laser shots [J]. Applied Physics A,2014,116:1429-1435. doi: 10.1007/s00339-014-8255-0
    [16] ZHANG K, DENG J, XING Y, et al. Effect of microscale texture on cutting performance of WC/Co-based TiAlN coated tools under different lubrication conditions [J]. Applied Surface Science,2015,326:107-118. doi: 10.1016/j.apsusc.2014.11.059
    [17] BOROWIEC A, HAUGEN H. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses [J]. Applied Physics Letters,2003,82:4462-4464. doi: 10.1063/1.1586457
    [18] DERRIEN T, KOTER R, KRUGER J, et al. Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water [J]. Journal of Applied Physics,2014,116:074902. doi: 10.1063/1.4887808
    [19] COSTACHE F, HENYK M, REIF J. Surface patterning on insulators upon femtosecond laser ablation [J]. Applied Surface Science,2003,208/209:486-491. doi: 10.1016/S0169-4332(02)01443-5
    [20] CHEN S, SHEN B, CHEN Y, et al. Synergistic friction-reducing and anti-wear behaviors of graphene with micro- and nano-crystalline diamond films [J]. Diamond & Related Materials,2017,73:25-32.
    [21] FERRARI A, ROBERTSON J. Origin of the 1150 cm-1 Raman mode in nanocrystalline diamond [J]. Physical Review B,2001,63:121405. doi: 10.1103/PhysRevB.63.121405
    [22] CUI Y, SHEN B, SUN F. Influence of amorphous ceramic interlayers on tribological properties of CVD diamond films [J]. Applied Surface Science,2014,313:918-925. doi: 10.1016/j.apsusc.2014.06.107
    [23] 胡衡. 磷离子注入纳米金刚石薄膜的微结构与电学性能研究 [D]. 杭州: 浙江工业大学, 2012.

    HU Heng. The microstructural and electrical properties of phosphorus ion implanted nanocrystalline diamond films [D]. Hangzhou: Zhejiang University of Technology, 2012.
    [24] 黄桥, 孙红娟, 杨勇辉. 氧化石墨的谱学表征及分析 [J]. 无机化学学报,2011,27:1271-1276.

    HUANG Qiao, SUN Hongjuan, YANG Yonghui. Spectroscopy characterization and analysis of graphite oxide [J]. Chinese Journal of Inorganic Chemistry,2011,27:1271-1276.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  110
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-04
  • 修回日期:  2022-06-12
  • 录用日期:  2022-06-17
  • 刊出日期:  2022-08-16

目录

    /

    返回文章
    返回