CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁流变变间隙动压平坦化加工的工艺及机理

阎秋生 蔡志航 潘继生 黄蓓 曾自勤

阎秋生, 蔡志航, 潘继生, 黄蓓, 曾自勤. 磁流变变间隙动压平坦化加工的工艺及机理[J]. 金刚石与磨料磨具工程, 2022, 42(4): 488-494. doi: 10.13394/j.cnki.jgszz.2022.0004
引用本文: 阎秋生, 蔡志航, 潘继生, 黄蓓, 曾自勤. 磁流变变间隙动压平坦化加工的工艺及机理[J]. 金刚石与磨料磨具工程, 2022, 42(4): 488-494. doi: 10.13394/j.cnki.jgszz.2022.0004
YAN Qiusheng, CAI Zhihang, PAN Jisheng, HUANG Bei, ZENG Ziqin. Process and mechanism of magnetorheological variable gap dynamic pressure planarization finishing[J]. Diamond & Abrasives Engineering, 2022, 42(4): 488-494. doi: 10.13394/j.cnki.jgszz.2022.0004
Citation: YAN Qiusheng, CAI Zhihang, PAN Jisheng, HUANG Bei, ZENG Ziqin. Process and mechanism of magnetorheological variable gap dynamic pressure planarization finishing[J]. Diamond & Abrasives Engineering, 2022, 42(4): 488-494. doi: 10.13394/j.cnki.jgszz.2022.0004

磁流变变间隙动压平坦化加工的工艺及机理

doi: 10.13394/j.cnki.jgszz.2022.0004
基金项目: 国家自然科学基金(U1801259);广州市科技计划(201904010300);广东省自然科学基金(2019A1515010720)。
详细信息
    通讯作者:

    阎秋生,男,1962 年生,博士、教授、博士生导师。主要研究方向:光电子/微电子硬脆材料超精密加工理论与技术、材料节能节材加工技术等。E-mail:qsyan@gdut.edu.cn

  • 中图分类号: TG58;TH161

Process and mechanism of magnetorheological variable gap dynamic pressure planarization finishing

  • 摘要: 为提高光电晶片的磁流变抛光效率并实现其超光滑平坦化加工,提出其磁流变变间隙动压平坦化加工方法,研究不同变间隙条件下蓝宝石晶片的材料去除率和表面粗糙度随加工时间的变化,并分析磁流变变间隙动压平坦化加工机理。结果表明:通过蓝宝石晶片对磁流变抛光液施加轴向低频挤压振动,其抛光压力动态变化且磁流变液产生挤压强化效应,使抛光效率与抛光效果显著提升。在工件下压速度为1.0 mm/s,拉升速度为3.5 mm/s,挤压振动幅值为1 mm条件下磁流变变间隙动压平坦化抛光120 min后,蓝宝石晶片的表面粗糙度Ra由 6.22 nm下降为0.31 nm,材料去除率为5.52 nm/min,相较于恒定间隙磁流变抛光,其表面粗糙度降低66%,材料去除率提高55%。改变变间隙运动速度可以调控磁流变液的流场特性,且合适的工件下压速度和工件拉升速度有利于提高工件的抛光效率和表面质量。

     

  • 图  1  磁流变变间隙动压平坦化加工原理图

    Figure  1.  Schematic diagram of magnetorheological variable gap dynamic pressure planarization finishing

    图  2  磁流变变间隙动压平坦化加工试验装置

    Figure  2.  Magnetorheological variable gap dynamic pressure planarization finishing experimental device

    图  3  材料去除率随加工时间的变化

    Figure  3.  Change of material removal rate with processing time

    图  4  加工表面粗糙度与加工时间的关系

    Figure  4.  Relationship between machining surface roughness and machining time

    图  5  蓝宝石表面形貌随加工时间的变化

    Figure  5.  Variation of sapphire surface morphologies with processing times

    图  6  不同加工条件下的抛光效果对比分析

    Figure  6.  Comparative analysis of polishing effects under different processing conditions

    图  7  蓝宝石晶片不同位置的表面粗糙度

    Figure  7.  Surface roughness of sapphire wafer at different positions

    图  8  磁流变变间隙动压平坦化加工作用机理

    Figure  8.  Mechanism of magnetorheological variable gap dynamic pressure flattening

    表  1  试验工艺参数表

    Table  1.   Experimental process parameters

    试验
    编号
    挤压振动
    幅值
    A / mm
    下压速度
    v1 / (mm·s−1)
    拉升速度
    v2 / (mm·s−1)
    加工时间
    t / min
    100015, 30, 60, 90, 120
    211.01.0
    311.03.5
    413.53.5
    下载: 导出CSV
  • [1] 吉建伟, 山村和也, 邓辉. 面向单晶SiC原子级表面制造的等离子体辅助抛光技术 [J]. 物理学报,2021,70(6):74-86.

    JI Jianwei, KAZUYA Y, DENG Hui. Plasma-assisted polishing for atomic surface fabrication of single crystal SiC [J]. Acta Physica Sinica,2021,70(6):74-86.
    [2] 杨超, 李福坤, 任婷, 等. 碳化硅晶圆的快速高质量复合加工方法 [J]. 光学学报,2020,40(13):141-146.

    YANG Chao, LI Fukun, REN Ting, et al. Fast and high quality composite processing method for silicon carbide wafers [J]. Acta Optica Sinica,2020,40(13):141-146.
    [3] 余青, 刘德福, 陈涛. 单晶蓝宝石衬底晶片的化学机械抛光工艺研究 [J]. 表面技术,2017,46(3):253-261. doi: 10.16490/j.cnki.issn.1001-3660.2017.03.038

    YU Qing, LIU Defu, CHEN Tao. Chemico-mechanical polishing technique of monocrystal sapphire substrate wafer [J]. Surface Technology,2017,46(3):253-261. doi: 10.16490/j.cnki.issn.1001-3660.2017.03.038
    [4] WATANABE J, SUZUKI J, KOBAYASHI A. High precision polishing of semiconductor materials using hydrodynamic principle [J]. CIRP Annals Manufacturing Technology,1981,30(1):91-95. doi: 10.1016/S0007-8506(07)60902-0
    [5] 舒谊, 周林, 解旭辉, 等. 离子束倾斜入射抛光对表面粗糙度的影响 [J]. 纳米技术与精密工程,2012,10(4):365-368. doi: 10.3969/j.issn.1672-6030.2012.04.016

    SHU Yi, ZHOU Lin, JIE Xuhui, et al. Impact of oblique incidence in ion beam figuring on surface roughness [J]. Nanotechnology and Precision Engineering,2012,10(4):365-368. doi: 10.3969/j.issn.1672-6030.2012.04.016
    [6] JACOBS S D, GOLINI D, HSU Y, et al. Magnetorheological finishing: A deterministic process for optics manufacturing: International conference on optical fabrication and testing [C]. Tokyo: International Society for Optics and Photonics, 1995.
    [7] KORDONSKI W, JACOBS S. Model of magnetorheological finishing [J]. Journal of Intelligent Material Systems & Structures,1996,7(2):131-137.
    [8] KORDONSKI W, GORODKIN S. Material removal in magnetorheological finishing of optics [J]. Applied Optics,2011,50(14):1984-1994. doi: 10.1364/AO.50.001984
    [9] WANG Y Q, YIN S H, HUANG H, et al. Magnetorheological polishing using a permanent magnetic yoke with straight air gap for ultra-smooth surface planarization [J]. Precision Engineering,2015,40:309-317. doi: 10.1016/j.precisioneng.2014.11.001
    [10] 颜晓强, 王晗, 张嘉荣, 等. 小口径非球面小球头接触式抛光及磁流变抛光组合加工 [J/OL]. 表面技术, 2021: 1-15[2022-01-28]. http://kns.cnki.net/kcms/detail/50.1083.TG.20211208.2237.002.html.

    YAN Xiaoqiang, WANG Han, ZHANG Jiarong, et al. Combined process of small ball-end contact polishing and magnetorheological polishing for small aspheric surface [J/OL]. Surface Technology, 2021: 1-15[2022-01-28]. http://kns.cnki.net/kcms/detail/50.1083.TG.20211208.2237.002.html
    [11] 陈丙三, 郑城, 黄迪程. SLM成型316L不锈钢磁流变抛光工艺试验研究 [J]. 工具技术,2021,55(10):82-86. doi: 10.3969/j.issn.1000-7008.2021.10.016

    CHEN Bingsan, ZHENG Cheng, HUANG Dicheng. Experimental study on magnetorheological polishing process of 316L stainless steel formed by SLM [J]. Tool Engineering,2021,55(10):82-86. doi: 10.3969/j.issn.1000-7008.2021.10.016
    [12] 付有志, 路家斌, 阎秋生, 等. 磁流变动压复合抛光基本原理及力学特性 [J]. 表面技术,2020,49(4):55-63. doi: 10.16490/j.cnki.issn.1001-3660.2020.04.007

    FU Youzhi, LU Jiabin, YAN Qiusheng, et al. Basic principle and mechanical property of magnetorheological hydrodynamic compound polishing [J]. Surface Technology,2020,49(4):55-63. doi: 10.16490/j.cnki.issn.1001-3660.2020.04.007
    [13] TAO. Super-strong magnetorheological fluids [J]. Journal of Physics Condensed Matter,2001,13(50):R979-R999. doi: 10.1088/0953-8984/13/50/202
    [14] MAZLAN S A, ISSA A, CHOWDHURY H A, et al. Magnetic circuit design for the squeeze mode experiments on magnetorheological fluids [J]. Materials & Design,2009,30(6):1985-1993.
    [15] 阎秋生, 廖博涛, 路家斌, 等. 集群磁流变变间隙动压平坦化加工试验研究 [J]. 机械工程学报,2021,57(19):230-238. doi: 10.3901/JME.2021.19.021

    YAN Qiusheng, LIAO Botao, LU Jiabin, et al. Experimental study on cluster magnetorheological variable gap dynamic pressure planarization finishing [J]. Journal of Mechanical Engineering,2021,57(19):230-238. doi: 10.3901/JME.2021.19.021
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  87
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-28
  • 修回日期:  2022-03-21
  • 录用日期:  2022-03-21
  • 网络出版日期:  2023-02-07
  • 刊出日期:  2022-08-10

目录

    /

    返回文章
    返回