CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁力研磨法光整内凹槽底面的工艺参数优化

陈法宇 孙玉利 王燎原 张鹏 盛一 西川尚宏

陈法宇, 孙玉利, 王燎原, 张鹏, 盛一, 西川尚宏. 磁力研磨法光整内凹槽底面的工艺参数优化[J]. 金刚石与磨料磨具工程, 2022, 42(2): 216-222. doi: 10.13394/j.cnki.jgszz.2021.0122
引用本文: 陈法宇, 孙玉利, 王燎原, 张鹏, 盛一, 西川尚宏. 磁力研磨法光整内凹槽底面的工艺参数优化[J]. 金刚石与磨料磨具工程, 2022, 42(2): 216-222. doi: 10.13394/j.cnki.jgszz.2021.0122
CHEN Fayu, SUN Yuli, WANG Liaoyuan, ZHANG Peng, SHENG Yi, NISHIKAWA Naohiro. Optimization of process parameters for finishing the bottom surface of inner groove by magnetic grinding[J]. Diamond & Abrasives Engineering, 2022, 42(2): 216-222. doi: 10.13394/j.cnki.jgszz.2021.0122
Citation: CHEN Fayu, SUN Yuli, WANG Liaoyuan, ZHANG Peng, SHENG Yi, NISHIKAWA Naohiro. Optimization of process parameters for finishing the bottom surface of inner groove by magnetic grinding[J]. Diamond & Abrasives Engineering, 2022, 42(2): 216-222. doi: 10.13394/j.cnki.jgszz.2021.0122

磁力研磨法光整内凹槽底面的工艺参数优化

doi: 10.13394/j.cnki.jgszz.2021.0122
基金项目: 南京市科技计划项目—国际联合研发项目(202002047);南京航空航天大学2020年度研究生创新试验竞赛培育项目;南京航空航天大学2021年度研究生科研与实践创新计划项目(xcxjh20210511)。
详细信息
    通讯作者:

    孙玉利,男,1970年生,教授、博士生导师。研究方向:精密超精密加工技术、现代表面工程技术等。E-mail: sunyuli@nuaa.edu.cn

  • 中图分类号: TG58; TH161+.14

Optimization of process parameters for finishing the bottom surface of inner groove by magnetic grinding

  • 摘要: 为提高磁力研磨法光整异形波导管内凹槽底面的研磨效率和研磨效果,解决其难光整问题,采用正交试验法研究钢珠直径、加工间隙、磁极盘转速3个主要工艺参数对表面粗糙度降低率ΔRa的影响,并采用极差分析和方差分析法对工艺参数进行分析和优化。试验确定的最佳工艺参数组合是钢珠直径为1.0 mm,加工间隙为1 mm,磁极盘转速为800 r/min。采用最佳工艺参数对试样进行研磨抛光,加工30 min后试样表面的大量突起被去除,表面粗糙度值Ra从初始的11.059 μm降至1.513 μm,粗糙度降低率ΔRa达到最大值86.3%,试样的表面质量得到有效改善。

     

  • 图  1  磁力研磨内凹槽底面工作原理

    Figure  1.  Working principle of finishing the bottom surface of inner groove by magnetic grinding

    图  2  仿形夹具示意图

    Figure  2.  Schematic diagram of profiling fixture

    图  3  磁力研磨加工装置

    Figure  3.  Processing device of magnetic grinding

    图  4  磁极仿真结果

    Figure  4.  Magnetic pole simulation result

    图  5  各因素对粗糙度降低率的影响

    Figure  5.  Influence of various factors on the reduction rate of roughness

    图  6  粗糙度降低率与加工时间的关系

    Figure  6.  Relationship between roughness reduction rate and processing time

    图  7  研磨前后粗糙度对比

    Figure  7.  Roughness comparison before and after finishing

    图  8  试样研磨前后表面形貌对比

    Figure  8.  Comparison of the surface morphology of the sample before and after grinding

    表  1  正交试验因素水平

    Table  1.   Factor and level of orthogonal test

    水平因素
    钢珠直径 d / mm
    D
    加工间隙 a / mm
    E
    磁极盘转速 v / (r·min−1)
    F
    10.41500
    20.62600
    30.83700
    41.04800
    下载: 导出CSV

    表  2  正交试验方案及试验结果

    Table  2.   Orthogonal test plan and test results

    试验号DEF空白列空白列ΔRa / %
    10.415001149.5
    20.426002247.2
    30.437003334.6
    40.448004432.1
    50.616003469.7
    60.625004355.8
    70.638001261.9
    80.647002149.9
    90.817004280.7
    100.828003172.3
    110.835002453.5
    120.846001349.7
    131.018002385.4
    141.027001474.2
    151.036004162.7
    161.045003257.6
    下载: 导出CSV

    表  3  极差分析结果

    Table  3.   Range analysis results

    参数DEF
    K1163.4285.3216.4
    K2237.3249.5229.3
    K3256.2212.7239.4
    K4279.9189.3251.7
    极差 R116.596.035.3
    最优组合D4E1F4
    下载: 导出CSV

    表  4  方差分析结果

    Table  4.   Variance results

    因素偏差平方和 S自由度 f平均偏差
    平方和 S2
    F贡献率 ρ / %
    D1 898.693632.9053.3153.7
    E1 330.893443.6237.3337.3
    F168.54356.184.733.8
    误差71.23611.875.2
    总和3 469.3515
    下载: 导出CSV
  • [1] 苏昕, 李志华, 胡立皓, 等. 微波裂解腔体波导管馈口分布对废旧橡胶裂解的影响 [J]. 橡胶工业,2021,68(5):369-373.

    SU Xin, LI Zhihua, HU Lihao, et al. Influence of distribution of waveguide feed ports of microwave pyrolysis cavity on waste rubber's pyrolysis [J]. China Rubber Industry,2021,68(5):369-373.
    [2] 黄志洵. 表面波波导理论的研究 [J]. 北京广播学院学报(自然科学版),2005,12(3):1-13.

    HUANG Zhixun. Study of surface-wave guiding structure [J]. Journal of Beijing Broadcasting Institute (Science and Technology),2005,12(3):1-13.
    [3] 滕潇. AlSi10Mg合金选区激光熔化成形及其表面磁力光整加工工艺研究 [D]. 淄博: 山东理工大学, 2020.

    TENG Xiao. Research on selective laser melting of AlSi10Mg alloy and subsequent surface magnetic abrasive finishing process [D]. Zibo: Shandong University of Technology, 2020.
    [4] 杨鑫, 王婉琳, 范亚卓, 等. 3D打印金属零件后处理研究现状 [J]. 功能材料,2020,51(5):5043-5052. doi: 10.3969/j.issn.1001-9731.2020.05.007

    YANG Xin, WANG Wanlin, FAN Yazhuo, et al. Research status of post-processing of 3D printing metal parts [J]. Journal of Functional Materials,2020,51(5):5043-5052. doi: 10.3969/j.issn.1001-9731.2020.05.007
    [5] 展旭和, 罗传彪, 黄粒, 等. 压铸雷达用高精度波导管的研制 [J]. 特种铸造及有色合金,2020,40(2):179-182.

    ZHAN Xuhe, LUO Chuanbiao, HUANG Li, et al. Manufacturing of high precision waveguide using for radar by die casting [J]. Special Casting & Nonferrous Alloys,2020,40(2):179-182.
    [6] 胡福泰, 汪飞雪, 臧新良, 等. 波导管弯曲工艺参数对壁厚减薄量的影响 [J]. 中国有色金属学报,2019,29(10):2348-2355.

    HU Futai, WANG Feixue, ZANG Xinliang, et al. Influence of bending parameters of waveguide on wall thickness reduction [J]. The Chinese Journal of Nonferrous Metals,2019,29(10):2348-2355.
    [7] 王宣平, 段合露, 孙玉文, 等. 增材制造金属零件抛光加工技术研究进展 [J]. 表面技术,2020,49(4):1-10.

    WANG Xuanping, DUAN Helu, SUN Yuwen, et al. Advances in the research of polishing technologies for additive manufacturing metal parts [J]. Surface Technology,2020,49(4):1-10.
    [8] 章媛洁, 宋波, 赵晓, 等. 激光选区熔化增材与机加工复合制造AISI 420不锈钢: 表面粗糙度与残余应力演变规律研究 [J]. 机械工程学报,2018,54(13):170-178. doi: 10.3901/JME.2018.13.170

    ZHANG Yuanjie, SONG Bo, ZHAO Xiao, et al. Selective laser melting and subtractive hybrid manufacture AISI420 stainless steel: Evolution on surface roughness and residual stress [J]. Journal of Mechanical Engineering,2018,54(13):170-178. doi: 10.3901/JME.2018.13.170
    [9] BHADURI D, PENCHEV P, BATAL A, et al. Laser polishing of 3D printed mesoscale components [J]. Applied Surface Science,2017,405:29-46. doi: 10.1016/j.apsusc.2017.01.211
    [10] DUVAL-CHANEAC M S, HAN S, CLAUDIN C, et al. Experimental study on finishing of internal laser melting (SLM) surface with abrasive flow machining (AFM) [J]. Precision Engineering,2018,54:1-6. doi: 10.1016/j.precisioneng.2018.03.006
    [11] QIAN C, FAN Z H, TIAN Y B, et al. A review on magnetic abrasive finishing [J]. The International Journal of Advanced Manufacturing Technology,2021,112(3/4):619-634.
    [12] ZHU P, ZHANG G, DU J, et al. Removal mechanism of magnetic abrasive finishing on aluminum and magnesium alloys [J]. The International Journal of Advanced Manufacturing Technology,2021,114(5/6):1717-1729.
    [13] 张茂胜, 杨斌堂. 振动磁力研磨机理及多型面加工 [J]. 噪声与振动控制,2020,40(3):50-56, 72. doi: 10.3969/j.issn.1006-1355.2020.03.009

    ZHANG Maosheng, YANG Bintang. Mechanism of vibration assisted finishing and multi-face processing [J]. Noise and Vibration Control,2020,40(3):50-56, 72. doi: 10.3969/j.issn.1006-1355.2020.03.009
    [14] 韩冰, 邓超, 陈燕. 球形磁铁在弯管内表面磁力研磨中的应用 [J]. 摩擦学学报,2013,33(6):565-570.

    HAN Bing, DENG Chao, CHEN Yan. The spherical magnet processing of inner surface of bending pipe by magnetic abrasive finishing [J]. Tribology,2013,33(6):565-570.
    [15] 张琳, 赵吉宾, 李论. 复杂曲面磁力研磨加工方法研究 [J]. 组合机床与自动化加工技术,2014(1):129-131,135.

    ZHANG Lin, ZHAO Jibin, LI Lun. Magnetic abrasive finishing method research of complex curved surface [J]. Modular Machine Tool & Automatic Manufacturing Technique,2014(1):129-131,135.
    [16] 高传玉, 倪秀付, 袁润, 等. 旋转磁场在微小工件磁力研磨加工中的应用 [J]. 机械设计与制造,2011(2):64-66. doi: 10.3969/j.issn.1001-3997.2011.02.026

    GAO Chuanyu, NI Xiufu, YUAN Run, et al. The application of rotating magnetic field on manufacturing of micro-parts in magnetic abrasive finishing [J]. Machinery Design & Manufacture,2011(2):64-66. doi: 10.3969/j.issn.1001-3997.2011.02.026
    [17] 焦安源, 李宗泽, 全洪军, 等. 基于磁力研磨法光整内环槽的实验研究 [J]. 制造技术与机床,2015(8):114-117. doi: 10.3969/j.issn.1005-2402.2015.08.032

    JIAO Anyuan, LI Zongze, QUAN Hongjun, et al. Experimental study on polish inner ring groove based on magnetic abrasive finishing [J]. Manufacturing Technology & Machine Tool,2015(8):114-117. doi: 10.3969/j.issn.1005-2402.2015.08.032
    [18] 陈燕, 张广彬, 韩冰, 等. 磁力研磨法对陶瓷管内表面超精密抛光技术的试验研究 [J]. 摩擦学学报,2015,32(2):131-137.

    CHEN Yan, ZHANG Guangbin, HAN Bing, et al. Experimental investigation of magnetic abrasive finishing for super precision polishing of inner surface of the ceramic tube [J]. Tribology,2015,32(2):131-137.
    [19] 耿其东, 李春燕. 磁力研磨加工K9光学玻璃的实验研究 [J]. 表面技术,2018,47(7):112-118.

    GENG Qidong, LI Chunyan. Experimental study on magnetic abrasive finishing K9 optical glass [J]. Surface Technology,2018,47(7):112-118.
    [20] 肖阳, 孙友松, 陈光忠. 永磁场磁力研磨TC11钛合金的实验研究 [J]. 表面技术,2017,46(2):229-234.

    XIAO Yang, SUN Yousong, CHEN Guangzhong. Experimental study of magnetic abrasive finishing of TC11 titanium alloy in permanent magnetic field [J]. Surface Technology,2017,46(2):229-234.
    [21] 杜嘉静, 张桂香, 朱培鑫, 等. 加工间隙对CBN磁性磨料研磨904L不锈钢表面完整性的影响 [J]. 表面技术,2021,50(6):338-346.

    DU Jiajing, ZHANG Guixiang, ZHU Peixin, et al. Influence of machining gap on surface integrity of 904L stainless steel finished by CBN magnetic abrasive particles [J]. Surface Technology,2021,50(6):338-346.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  146
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2022-01-27
  • 录用日期:  2022-02-18
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回