CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声振动辅助磨削弧区的单颗磨粒切厚特征

张坤 殷振 戴晨伟 苗情 程祺辉

张坤, 殷振, 戴晨伟, 苗情, 程祺辉. 超声振动辅助磨削弧区的单颗磨粒切厚特征[J]. 金刚石与磨料磨具工程, 2022, 42(1): 88-96. doi: 10.13394/j.cnki.jgszz.2021.0109
引用本文: 张坤, 殷振, 戴晨伟, 苗情, 程祺辉. 超声振动辅助磨削弧区的单颗磨粒切厚特征[J]. 金刚石与磨料磨具工程, 2022, 42(1): 88-96. doi: 10.13394/j.cnki.jgszz.2021.0109
ZHANG Kun, YIN Zhen, DAI Chenwei, MIAO Qing, CHENG Qihui. Undeformed chip thickness characteristics in grain-workpiece contact zone in ultrasonic vibration assisted grinding[J]. Diamond & Abrasives Engineering, 2022, 42(1): 88-96. doi: 10.13394/j.cnki.jgszz.2021.0109
Citation: ZHANG Kun, YIN Zhen, DAI Chenwei, MIAO Qing, CHENG Qihui. Undeformed chip thickness characteristics in grain-workpiece contact zone in ultrasonic vibration assisted grinding[J]. Diamond & Abrasives Engineering, 2022, 42(1): 88-96. doi: 10.13394/j.cnki.jgszz.2021.0109

超声振动辅助磨削弧区的单颗磨粒切厚特征

doi: 10.13394/j.cnki.jgszz.2021.0109
基金项目: 国家自然科学基金(51905363);江苏省自然科学基金(BK20190940);江苏省高等学校自然科学研究面上项目(19KJB460008);江苏省研究生科研与实践创新计划项目(KYCX21_3009)。
详细信息
    通讯作者:

    戴晨伟,男,1989年生,博士、副教授、硕士研究生导师。主要研究方向:高效精密磨削加工技术。E-mail: cw.dai@usts.edu.cn

  • 中图分类号: TG58

Undeformed chip thickness characteristics in grain-workpiece contact zone in ultrasonic vibration assisted grinding

  • 摘要: 为准确描述超声振动下的单颗磨粒切厚特征,实测多层金属结合剂金刚石砂轮表面的相邻2颗磨粒的周向间距以及磨粒出刃高度;依据超声振动辅助磨削的磨粒运动轨迹方程及相邻磨粒运动轨迹干涉理论,采用等分线法,利用MATLAB软件求解磨粒在完整接触弧区的单颗磨粒切厚值,并分析各主要参数对单颗磨粒切厚特征的影响。结果表明:相邻磨粒间距、相邻磨粒高度差对单颗磨粒切厚的影响均呈线性变化;单颗磨粒切厚随超声振幅的增大而线性增大,且随超声振动频率的增大而阶段性变化;超声振动辅助磨削的单颗磨粒切厚特征受砂轮转速、磨削深度的影响较大,受工件进给速度的影响相对较小。

     

  • 图  1  磨削弧区切屑微观形成过程

    Figure  1.  Chip formation process in grinding arc zone

    图  2  多层金刚石砂轮工作面磨粒参数测量过程及结果

    Figure  2.  Measurement process and results of abrasive parameters of multi-layer diamond grinding wheel working face

    图  3  超声振动辅助磨削的单颗磨粒切厚特征计算方法

    Figure  3.  Calculation method of undeformed chip thickness characteristics in ultrasonic vibration-assisted grinding

    图  4  相邻磨粒间距对单颗磨粒切厚特征的影响

    Figure  4.  Influence of adjacent grain spacing on undeformed chip thickness characteristic

    图  5  相邻磨粒高度差对单颗磨粒切厚特征的影响

    Figure  5.  Influence of the difference of adjacent grain heights on undeformed chip thickness characteristic

    图  6  超声振动方向对单颗磨粒切厚特征的影响

    Figure  6.  Influence of ultrasonic vibration direction on undeformed chip thickness characteristic

    图  7  超声振幅对单颗磨粒切厚特征的影响

    Figure  7.  Influence of ultrasonic vibration amplitude on undeformed chip thickness characteristic

    图  8  超声振动频率对单颗磨粒切厚特征的影响

    Figure  8.  Influence of ultrasonic vibration frequency on undeformed chip thickness characteristic

    图  9  砂轮转速对单颗磨粒切厚特征的影响

    Figure  9.  Effect of wheel rotational speed on undeformed chip thickness characteristic

    图  10  进给速度对单颗磨粒切厚特征的影响

    Figure  10.  Influence of workpiece infeed speed on undeformed chip thickness characteristic

    图  11  磨削深度对单颗磨粒切厚特征的影响

    Figure  11.  Effect of the depth of cut on undeformed chip thickness characteristic

    表  1  加工参数

    Table  1.   Processing parameters

    参数数值
    砂轮基体直径 db / mm20
    工件长度 Lw / mm2
    磨粒间距 Lg / mm0.145~0.908
    磨粒出刃高度 h / µm27~93
    超声振动方向x, y
    超声振幅 A / µm2, 4, 6, 8, 10, 12
    超声振动频率 f / kHz18, 20, 25, 28, 33, 35, 40
    初始相位 φπ/6
    砂轮转速 n / (r∙min−1)6 000,9 000,10 700,12 000,
    15 000,16 800,18 000,21 000
    工件进给速度 vw / (mm∙min−1)50, 100, 150, 200, 250, 300
    磨削深度 ap / µm5, 12, 15, 20, 25, 29, 35
    下载: 导出CSV
  • [1] SUN G, SHI F, MA Z. Effects of axial ultrasonic vibration on grinding quality in peripheral grinding and end grinding of ULE [J]. The International Journal of Advanced Manufacturing Technology,2020,109(7/8):2285-2298. doi: 10.1007/s00170-020-05761-5
    [2] DAI J, DING W, ZHANG L, et al. Understanding the effects of grinding speed and undeformed chip thickness on the chip formation in high-speed grinding [J]. The International Journal of Advanced Manufacturing Technology,2015,81(5/6/7/8):995-1005. doi: 10.1007/s00170-015-7265-1
    [3] 郎献军, 何玉辉, 唐进元, 等. 基于磨粒突出高度为瑞利分布的磨削力模型 [J]. 中南大学学报(自然科学版),2014,45(10):3386-3391.

    LANG Xianjun, HE Yuhui, TANG Jinyuan, et al. Grinding force model based on rayleigh distribution of abrasive protrusion height [J]. Journal of Central South University (Science and Technology),2014,45(10):3386-3391.
    [4] 程军, 巩亚东, 武治政, 等. 硬脆材料微磨削表面形成机理试验研究 [J]. 机械工程学报,2012,48(21):190-198. doi: 10.3901/JME.2012.21.190

    CHENG Jun, GONG Yadong, WU Zhizheng, et al. Experimental study on surface formation mechanism of micro grinding of hard and brittle materials [J]. Journal of Mechanical Engineering,2012,48(21):190-198. doi: 10.3901/JME.2012.21.190
    [5] ZHANG Y, FANG C, HUANG G, et al. Modeling and simulation of the distribution of undeformed chip thicknesses in surface grinding [J]. International Journal of Machine Tools and Manufacture,2018,127:14-27. doi: 10.1016/j.ijmachtools.2018.01.002
    [6] DING W, DAI C, YU T, et al. Grinding performance of textured monolayer CBN wheels: Undeformed chip thickness nonuniformity modeling and ground surface topography prediction [J]. International Journal of Machine Tools and Manufacture,2017,122:66-80. doi: 10.1016/j.ijmachtools.2017.05.006
    [7] 丁晨, 丁文锋, 戴晨伟, 等. 单层钎焊CBN砂轮表面形貌重构与磨粒切厚分布特征研究 [J]. 金刚石与磨料磨具工程,2016,36(4):24-28.

    DING Chen, DING Wenfeng, DAI Chenwei, et al. Study on surface morphology reconstruction and abrasive thickness distribution characteristics of single layer brazed CBN grinding wheel [J]. Diamond & Abrasives Engineering,2016,36(4):24-28.
    [8] 田霖, 傅玉灿, 杨路, 等. 基于速度效应的高温合金高速超高速磨削成屑过程及磨削力研究 [J]. 机械工程学报,2013,49(9):169-177. doi: 10.3901/JME.2013.09.169

    TIAN Lin, FU Yucan, YANY Lu, et al. Research on chip forming process and grinding force of superalloy based on velocity effect in high and ultra high speed grinding [J]. Journal of Mechanical Engineering,2013,49(9):169-177. doi: 10.3901/JME.2013.09.169
    [9] 刘立飞, 张飞虎, 刘民慧. 碳化硅陶瓷的超声振动辅助磨削 [J]. 光学精密工程,2015,23(8):2229-2235. doi: 10.3788/OPE.20152308.2229

    LIU Lifei, ZHANG Feihu, LIU Minhui. Ultrasonic assisted grinding for silicon carbide [J]. Optics and Precision Engineering,2015,23(8):2229-2235. doi: 10.3788/OPE.20152308.2229
    [10] CAO Y, YIN J, DING W, et al. Alumina abrasive wheel wear in ultrasonic vibration-assisted creep-feed grinding of Inconel 718 nickel-based superalloy [J]. Journal of Materials Processing Technology,2021,297:117241. doi: 10.1016/j.jmatprotec.2021.117241
    [11] ZHAO B, CHEN F, JIA X, et al. Surface quality prediction model of nano-composite ceramics in ultrasonic vibration-assisted ELID mirror grinding [J]. Journal of Mechanical Science and Technology,2017,31:1877-1884. doi: 10.1007/s12206-017-0335-6
    [12] CHEN J, AN Q, MING W, et al. Investigation on machined surface quality in ultrasonic-assisted grinding of Cf/SiC composites based on fracture mechanism of carbon fibers [J]. The International Journal of Advanced Manufacturing Technology,2020,109(5-6):1583-1599. doi: 10.1007/s00170-020-05739-3
    [13] JAIN A K, PANDEY P M. Modeling of un-deformed chip thickness in RUM process and study of size effects in μ-RUM [J]. Ultrasonics,2017,77:1-16. doi: 10.1016/j.ultras.2017.01.015
    [14] ZHOU W, SU H, DAI J, et al. Numerical investigation on the influence of cutting-edge radius and grinding wheel speed on chip formation in SiC grinding [J]. Ceramics International,2018,44(17):21451-21460. doi: 10.1016/j.ceramint.2018.08.206
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  74
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13
  • 修回日期:  2021-09-18
  • 录用日期:  2021-09-26
  • 网络出版日期:  2022-03-17
  • 刊出日期:  2022-03-17

目录

    /

    返回文章
    返回