CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CVD金刚石膜激光平整化效率和粗糙度

李世谕 安康 邵思武 黄亚博 张建军 郑宇亭 陈良贤 魏俊俊 刘金龙 李成明

李世谕, 安康, 邵思武, 黄亚博, 张建军, 郑宇亭, 陈良贤, 魏俊俊, 刘金龙, 李成明. CVD金刚石膜激光平整化效率和粗糙度[J]. 金刚石与磨料磨具工程, 2022, 42(1): 61-68. doi: 10.13394/j.cnki.jgszz.2021.0104
引用本文: 李世谕, 安康, 邵思武, 黄亚博, 张建军, 郑宇亭, 陈良贤, 魏俊俊, 刘金龙, 李成明. CVD金刚石膜激光平整化效率和粗糙度[J]. 金刚石与磨料磨具工程, 2022, 42(1): 61-68. doi: 10.13394/j.cnki.jgszz.2021.0104
LI Shiyu, AN Kang, SHAO Siwu, HUANG Yabo, ZHANG Jianjun, ZHENG Yuting, CHEN Liangxian, WEI Junjun, LIU Jinlong, LI Chengming. Laser planarization efficiency and roughness of CVD diamond film[J]. Diamond & Abrasives Engineering, 2022, 42(1): 61-68. doi: 10.13394/j.cnki.jgszz.2021.0104
Citation: LI Shiyu, AN Kang, SHAO Siwu, HUANG Yabo, ZHANG Jianjun, ZHENG Yuting, CHEN Liangxian, WEI Junjun, LIU Jinlong, LI Chengming. Laser planarization efficiency and roughness of CVD diamond film[J]. Diamond & Abrasives Engineering, 2022, 42(1): 61-68. doi: 10.13394/j.cnki.jgszz.2021.0104

CVD金刚石膜激光平整化效率和粗糙度

doi: 10.13394/j.cnki.jgszz.2021.0104
基金项目: 国家磁约束核聚变能发展研究专项资助(2019YFE03100200);国家自然科学基金(5210020483);中央高校基本科研业务费(FRF-MP-20-48);北京科技大学顺德研究生院博士后科研经费(2020BH015)。
详细信息
    通讯作者:

    安康,男,1989生,博士后。主要研究方向:金刚石装备制造及性能。E-mail: ankang@ustb.edu.cn

    李成明,男,1962年生,教授、博导。主要研究方向:金刚石薄膜和金刚石单晶,功能薄膜材料。E-mail: chengmli@mater.ustb.edu.cn

  • 中图分类号: TQ16

Laser planarization efficiency and roughness of CVD diamond film

  • 摘要: 对化学气相沉积(CVD)多晶金刚石膜进行激光平整化的正交试验,使用场发射环境扫描电子显微镜(SEM)进行形貌分析,激光共聚焦扫描显微镜测量线粗糙度Ra、面粗糙度Sa和切缝锥度,分析激光参数对CVD膜平整化的影响。结果表明:影响切缝锥度的因素依次为脉冲宽度、脉冲频率、进给速度和激光电流,影响线粗糙度Ra的因素依次为进给速度、激光电流、脉冲频率、脉冲宽度。正交试验优化后,当激光电流为64 A、脉冲宽度为400 μs、脉冲频率为275 Hz、进给速度为100 mm/min时,可获得最佳的切槽表面形貌。采用该优化参数进行面扫描,测得面粗糙度Sa为11.7 μm;进一步增加入射角度至75°时,面粗糙度Sa降低至1.9 μm,实际去除效率达到1.1 mm3/min。

     

  • 图  1  激光切口侧视图

    Figure  1.  Laser kerf side view

    图  2  激光切口简化示意图

    Figure  2.  Laser kerf simplified schematic diagram

    图  3  不同脉冲宽度对切缝的形貌影响

    Figure  3.  Influence of different laser pulse width on the morphology of the kerf

    图  4  切缝锥度和线粗糙度Ra随脉冲宽度变化曲线

    Figure  4.  Curves of taper and roughness Ra changing with pulse width

    图  5  切缝锥度和线粗糙度Ra随激光电流变化曲线

    Figure  5.  Curves of taper and roughness Ra changing with current

    图  6  切缝锥度和线粗糙度Ra随频率变化曲线影响

    Figure  6.  Curves of taper and roughness Ra changing with frequency

    图  7  切缝锥度和线粗糙度Ra随进给速度变化曲线

    Figure  7.  Curves of taper and roughness Ra changing with feed speed

    图  8  面粗糙度Sa和烧蚀深度随切缝步长变化曲线

    Figure  8.  Variations of surface roughness Sa and ablation depth with step size

    图  9  入射角对表面形貌的影响

    Figure  9.  Influence of incident angle on surface topography

    图  10  面粗糙度Sa和烧蚀深度随入射角α变化曲线

    Figure  10.  Curves of surface roughness Sa and ablation depth changing with incident angle

    图  11  激光平整金刚石膜表面原理图

    Figure  11.  Schematic diagram of laser flattening diamond film surface

    图  12  3组试验的材料去除效率和面粗糙度Sa变化

    Figure  12.  Changes of material removal efficiency and surface roughness Sa in three groups of experiments

    表  1  正交试验工艺参数

    Table  1.   Orthogonal test process parameters

    水平A
    电流 I / A
    B
    脉宽 t / μs
    C
    频率 f / Hz
    D
    进给速度 v / (mm·min−1)
    160400200100
    262425225200
    364450250300
    466475275400
    568500300500
    下载: 导出CSV

    表  2  机械研磨和激光平整化对比参数

    Table  2.   Comparative parameters of mechanical grinding and laser planarization

    试验序号粒度代号进给速度 v / (mm·min−1)
    180/100100
    2200/230200
    3M36/54300
    下载: 导出CSV
  • [1] AN K, CHEN L X, YAN X B, et al. Fracture strength and toughness of chemical-vapor-deposited polycrystalline diamond films [J]. Ceramics International,2018,44(15):17845-17851. doi: 10.1016/j.ceramint.2018.06.253
    [2] 刘金龙, 安康, 陈良贤, 等. CVD金刚石自支撑膜的研究进展 [J]. 表面技术,2018,47(4):1-10.

    LIU Jinlong, AN Kang, CHEN Liangxian, et al. Research progress of freestanding CVD diamond films [J]. Surface Technology,2018,47(4):1-10.
    [3] GRUEN D M, BUCKLEY-GOLDER I. Diamond films: Recent developments [J]. MRS Bulletin,2013,23(9):16-21.
    [4] SCHWANDER M, PARTES K. A review of diamond synthesis by CVD processes [J]. Diamond and Related Materials,2011,20(9):1287-1301. doi: 10.1016/j.diamond.2011.08.005
    [5] KHAN B A, LITVINYUK I V, RYBACHUK M. Femtosecond laser micromachining of diamond: Current research status, applications and challenges [J]. Carbon,2021,179:209-226. doi: 10.1016/j.carbon.2021.04.025
    [6] ZHENG Y T, LI C M, LIU J L, et al. Diamond with nitrogen: States, control, and applications [J]. Functional Diamond,2021,1(1):63-82. doi: 10.1080/26941112.2021.1877021
    [7] SAKAUCHI K, NAGAI M, TABAKOYA T, et al. Mechanical damage-free surface planarization of single-crystal diamond based on carbon solid solution into nickel [J]. Diamond and Related Materials,2021,116:1-6.
    [8] MAN W D, WANG J H, WANG C X, et al. Planarizing CVD diamond films by using hydrogen plasma etching enhanced carbon diffusion process [J]. Diamond and Related Materials,2007,16(8):1455-1458. doi: 10.1016/j.diamond.2006.11.102
    [9] ILIAS S, SENE G, MOLLER P, et al. Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle [J]. Diamond and Related Materials,1996,5(6/7/8):835-839. doi: 10.1016/0925-9635(95)00412-2
    [10] NORIKAZU S, MISONO H, SHAMOTO E, et al. Material removal efficiency improvement by orientation control of CMP pad surface asperities [J]. Precision Engineering,2020,62:83-88. doi: 10.1016/j.precisioneng.2019.11.008
    [11] 徐峰. CVD金刚石厚膜的加工技术研究 [D]. 南京: 南京航空航天大学, 2002.

    XU Feng. Study on laser processing and machining of CVD diamond thick-film [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2002.
    [12] 季国顺, 张永康. 激光抛光化学气相沉积金刚石膜 [J]. 激光技术,2003,27(2):106-109. doi: 10.3969/j.issn.1001-3806.2003.02.005

    JI Guoshun, ZHANG Yongkang. Laser polishing of chemically vapor-deposited diamond films [J]. Laser Technology,2003,27(2):106-109. doi: 10.3969/j.issn.1001-3806.2003.02.005
    [13] 安康. 等离子体喷射金刚石膜板力学性能基础研 [D]. 北京: 北京科技大学, 2019.

    AN Kang. Basic research on mechanical properties of thick diamond film fabricated by plasma jet CVD [D]. Beijing: University of Science and Technology Beijing, 2019.
    [14] AN K, CHEN L X, YAN X B, et al. Fracture behavior of diamond films deposited by DC arc plasma jet CVD [J]. Ceramics International,2018, 44(11):13402-13408.
    [15] 刘立君, 王晓陆, 沈秀强, 等. 耐热钢表面激光熔覆陶瓷工艺 [J]. 哈尔滨理工大学学报,2020,25(1):7.

    Liu Lijun, Wang Xiaolu, Shen Xiuqiang, et al. Technology of laser cladding ceramics on heat resistant steel surface [J]. Journal of Harbin University of Science and Technology,2020,25(1):7.
    [16] LI C M, ZHU R H, LIU J L, et al. Effect of arc characteristics on the properties of large size diamond wafer prepared by DC arc plasma jet CVD [J]. Diamond and Related Materials,2013,39(10):47-52.
    [17] QI Z N, ZHENG Y T, WEI J J, et al. Surface treatment of an applied novel all-diamond microchannel heat sink for heat transfer performance enhancement [J]. Applied Thermal Engineering,2020,177:1-13.
    [18] TSAI H Y, TING C J, CHOU C P. Evaluation research of polishing methods for large area diamond films produced by chemical vapor deposition [J]. Diamond and Related Materials,2007,16(2):253-261. doi: 10.1016/j.diamond.2006.06.007
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  109
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-08-26
  • 录用日期:  2021-10-13
  • 网络出版日期:  2022-03-17
  • 刊出日期:  2022-03-17

目录

    /

    返回文章
    返回