CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高等离子体功率密度下MPCVD法制备多晶金刚石膜

何中文 马志斌

何中文, 马志斌. 高等离子体功率密度下MPCVD法制备多晶金刚石膜[J]. 金刚石与磨料磨具工程, 2022, 42(2): 156-161. doi: 10.13394/J.cnki.jgszz.2021.0121
引用本文: 何中文, 马志斌. 高等离子体功率密度下MPCVD法制备多晶金刚石膜[J]. 金刚石与磨料磨具工程, 2022, 42(2): 156-161. doi: 10.13394/J.cnki.jgszz.2021.0121
HE Zhongwen, MA Zhibin. Preparation of polycrystalline diamond films by MPCVD at high plasma power density[J]. Diamond & Abrasives Engineering, 2022, 42(2): 156-161. doi: 10.13394/J.cnki.jgszz.2021.0121
Citation: HE Zhongwen, MA Zhibin. Preparation of polycrystalline diamond films by MPCVD at high plasma power density[J]. Diamond & Abrasives Engineering, 2022, 42(2): 156-161. doi: 10.13394/J.cnki.jgszz.2021.0121

高等离子体功率密度下MPCVD法制备多晶金刚石膜

doi: 10.13394/J.cnki.jgszz.2021.0121
详细信息
    通讯作者:

    马志斌,男,1968年生,教授、博导。主要研究方向:等离子体技术与CVD金刚石。E-mail: mazb@wit.edu.cn

  • 中图分类号: TQ164

Preparation of polycrystalline diamond films by MPCVD at high plasma power density

  • 摘要: 通过自制的MPCVD双基片台设备,在微波功率为1400 W保持不变及中高气压,等离子体功率密度为357.5~807.4 W/cm3,基片温度为850 ± 30 ℃,CH4体积分数为1.0%~1.5%,沉积速率为1~8 μm/h条件下,在直径11.5 mm的硅基片上沉积不同质量的多晶金刚石膜,并通过光谱仪、光学显微镜、拉曼光谱仪对等离子体中的氢原子及含碳基团、多晶薄膜的形貌及质量进行表征。结果表明:随着等离子体功率密度上升,等离子体椭球中的氢原子基团和含C的活性基团强度增加,金刚石膜生长速率大幅度提高,金刚石膜纯度也大幅度提升。在气压为21 kPa,等离子体功率密度为807.4 W/cm3,基片温度为850±30 ℃,生长时间为150 h,CH4体积分数为1.0%及氢气流量为200 mL/min的条件下,金刚石膜的生长速率达到5 μm/h,金刚石膜厚达752.0 μm,金刚石拉曼峰的半高宽为6.48 cm−1,且生长的金刚石膜质量良好。

     

  • 图  1  双基片结构中的等离子体球形状

    Figure  1.  Plasma sphere shape in double substrate structure

    图  2  条件8#时的等离子体发射光谱图

    Figure  2.  Plasma emission spectrum under condition 8#

    图  3  中高气压下Hβ和C2基团的谱线强度随功率密度的变化

    Figure  3.  Variation of spectral line intensities of Hβ and C2 group with power densities at medium and high pressures

    图  4  1#~6#金刚石膜生长速率随等离子体功率密度的变化

    Figure  4.  Variation of 1#~6# diamond film growth rates with plasma power densities

    图  5  样品表面的SEM形貌

    Figure  5.  SEM morphologies of sample surface

    图  6  4个样品的Raman光谱图

    Figure  6.  Raman spectra of four samples

    表  1  金刚石膜生长参数

    Table  1.   Diamond film growth parameters

    条件及编号气压
    p / kPa
    等离子体功率密度
    η / (W·cm−3)
    基片温度
    θ / ℃
    生长时间
    t / h
    CH4体积分数
    φ / %
    H2流量
    qv / (mL·min−1)
    金刚石膜厚度
    L / μm
    1#15357.5850±30
    241.520026.0
    2#16416.7721.5158.4
    3#18527.5161.548.0
    4#19596.7361.5144.0
    5#20686.81701.51 020.0
    6#211001.5801.0
    7#807.4501.2302.0
    8#1501.0752.0
    下载: 导出CSV

    表  2  1#~8# 样品的拉曼峰半高宽

    Table  2.   FWHM of Raman peak of 1#~8# sample

    样品拉曼峰半高宽 d / (cm−1
    1#11.64
    2#7.94
    3#7.90
    4#7.58
    5#7.79
    6#6.87
    7#6.74
    8#6.48
    下载: 导出CSV
  • [1] SILVA F, HASSOUNI K, BONNIN X, et al. Microwave engineering of plasma-assisted CVD reactors for diamond deposition [J]. Journal of Physics Condensed Matter,2009,21(36):364202. doi: 10.1088/0953-8984/21/36/364202
    [2] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Developments of elemental technologies to produce inch-size single-crystal diamond wafer [J]. Diamond and Related Materials,2011,20(4):616-619. doi: 10.1016/j.diamond.2011.01.001
    [3] 冉均国, 王灿丽, 苟立, 等. 引入CO2提高金刚石薄膜的沉积速率 [J]. 稀有金属材料与工程,2007,36(z1):896-899. doi: 10.3321/j.issn:1002-185x.2007.z1.253

    RAN Junguo, WANG Canli, GOU Li, et al. Introducing CO2 to increase the deposition rate of diamond films [J]. Rare Metal Materials and Engineering,2007,36(z1):896-899. doi: 10.3321/j.issn:1002-185x.2007.z1.253
    [4] GOODWIN D G. Simulations of high-rate diamond synthesis: Methyl as growth species [J]. Applied Physics Letters,1991,59(3):277-279. doi: 10.1063/1.105620
    [5] HEMAWAN K W, GROTJOHN T A, REINHARD D K, et al. Improved microwave plasma cavity reactor for diamond synthesis at high-pressure and high power density [J]. Diamond and Related Materials,2010,19(12):1446-1452.
    [6] BOLSHAKOV A P, RALCHENKO V G, YUROV V Y, et al. Enhanced deposition rate of polycrystalline CVD diamond at high microwave power densities [J]. Diamond & Related Materials,2019,97:107466.
    [7] 翁俊, 刘繁, 孙祁, 等. 形核密度与氢等离子体处理对沉积CVD金刚石薄膜的影响 [J]. 真空电子技术,2016(3):35-39. doi: 10.3969/j.issn.1002-8935.2016.03.009

    WENG Jun, LIU Fan, SUN Qi, et al. The effect of nucleation density and hydrogen plasma treatment on the deposition of CVD diamond films [J]. Vacuum Electronics,2016(3):35-39. doi: 10.3969/j.issn.1002-8935.2016.03.009
    [8] TERAJI T. Chemical vapor deposition of homoepitaxial diamond films [M]. New York: John Wiley & Sons, Ltd., 2010.
    [9] DERKAOUI N, ROND C, HASSONI K, et al. Spectroscopic analysis of H2/CH4 microwave plasma and fast growth rate of diamond single crystal [J]. Journal of Applied Physics,2014,115(23):233301-233308. doi: 10.1063/1.4883955
    [10] STERNSCHULTE H, SCHRECK M, STRITZKER B. In situ characterisation of CVD diamond growth under H2S addition by optical emission spectroscopy, mass spectroscopy and laser reflection interferometry [J]. Diamond & Related Materials,2002,11(3/4/5/6):296-300.
    [11] GONON P, GHEERAERT E, DENEUVILLE A, et al. Raman study of diamond films deposited by MPCVD: Effect of the substrate position [J]. Thin Solid Films,1995,256(1/2):13-22. doi: 10.1016/0040-6090(94)06306-0
    [12] BAUER T, SCHRECK M, STEMSCHULTE H, et al. High growth rate homoepitaxial diamond deposition on off-axis substrates [J]. Diamond & Related Materials,2005,14(3/4/5/6/7):266-271.
    [13] 史新伟, 安子凤, 张水, 等. 甲烷浓度对金刚石薄膜质量的影响 [J]. 真空,2011(5):64-67.

    SHI Xinwei, AN Zifeng, ZHANG Shui, et al. The influence of methane concentration on the quality of diamond film [J]. Vacuum,2011(5):64-67.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  399
  • HTML全文浏览量:  137
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-11
  • 修回日期:  2021-12-27
  • 录用日期:  2022-03-18
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回