CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单颗磨粒切削的CBN铰珩工具磨粒磨损研究

杨长勇 张念辉 苏浩 丁文锋

杨长勇, 张念辉, 苏浩, 丁文锋. 基于单颗磨粒切削的CBN铰珩工具磨粒磨损研究[J]. 金刚石与磨料磨具工程, 2022, 42(6): 728-737. doi: 10.13394/j.cnki.jgszz.2022.0022
引用本文: 杨长勇, 张念辉, 苏浩, 丁文锋. 基于单颗磨粒切削的CBN铰珩工具磨粒磨损研究[J]. 金刚石与磨料磨具工程, 2022, 42(6): 728-737. doi: 10.13394/j.cnki.jgszz.2022.0022
YANG Changyong, ZHANG Nianhui, SU Hao, DING Wenfeng. Research on abrasive wear dress of CBN honing tool based on single abrasive cutting[J]. Diamond & Abrasives Engineering, 2022, 42(6): 728-737. doi: 10.13394/j.cnki.jgszz.2022.0022
Citation: YANG Changyong, ZHANG Nianhui, SU Hao, DING Wenfeng. Research on abrasive wear dress of CBN honing tool based on single abrasive cutting[J]. Diamond & Abrasives Engineering, 2022, 42(6): 728-737. doi: 10.13394/j.cnki.jgszz.2022.0022

基于单颗磨粒切削的CBN铰珩工具磨粒磨损研究

doi: 10.13394/j.cnki.jgszz.2022.0022
基金项目: 国家自然科学基金(52075252)。
详细信息
    作者简介:

    杨长勇,男,1980年生,博士、副教授。主要研究方向:超硬磨料工具技术、高速超高速磨削加工技术、难加工材料高效精密加工技术。E-mail: yangchy@nuaa.edu.cn

    张念辉:

  • 中图分类号: TG506;TG58;TQ164

Research on abrasive wear dress of CBN honing tool based on single abrasive cutting

  • 摘要: 采用单颗磨粒试验方法,以4Cr13不锈钢为修整材料,研究大长径比CBN铰珩工具修整过程中的磨粒磨损特性。试验结果显示:与普通切削相比,超声切削时的平均切削力降低60%~80%,但磨粒在短时间内大块破碎,磨削比严重下降。超声切削时的磨粒−工件接触比在0.6~0.8,磨粒主要处于断续切削过程,其最大切削宽度比普通切削时的增加2.7倍,且磨粒受到的最大瞬时切削力增加。根据点云信息对磨粒进行逆向建模,并对建立的单颗磨粒切削仿真模型的瞬时切削力进行定量分析。仿真结果显示:超声切削时的最大切向力比普通切削时的增加20%以上,且力的波动幅度超过80%。

     

  • 图  1  铰珩加工示意图

    Figure  1.  Schematic diagram of single-pass honing

    图  2  单颗磨粒切削试验装置

    Figure  2.  Single grain cutting test device

    图  3  磨粒磨损体积测量方法

    Figure  3.  Method for measuring abrasive wear volume

    图  4  CBN磨粒形貌演变(普通切削)

    Figure  4.  Evolution of CBN abrasive grain morphology (ordinary cutting)

    图  5  CBN磨粒形貌演变(超声切削)

    Figure  5.  Evolution of CBN abrasive grain morphology (ultrasonic cutting)

    图  6  磨粒磨削比

    Figure  6.  Abrasive grinding ratio

    图  7  平均切削力

    Figure  7.  Average cutting force

    图  8  磨粒运动轨迹(普通 / 超声)

    Figure  8.  Trajectory of abrasive (ordinary / ultrasonic)

    图  9  普通切削和超声切削时的切削宽度

    Figure  9.  Cutting width during normal cutting and ultrasonic cutting

    图  10  普通切削时的切削宽度

    Figure  10.  Cutting width during normal cutting

    图  11  超声切削时的磨粒轨迹与切削区分布

    Figure  11.  Abrasive particle trajectory and cutting zone distribution during ultrasonic cutting

    图  12  不同相位差下的切削宽度

    Figure  12.  Cutting width under different phase

    图  13  最大切宽变化

    Figure  13.  Maximum cutting width variation

    图  14  磨粒−工件接触比

    Figure  14.  Abrasive-workpiece contact ratio

    图  15  磨粒真实形貌

    Figure  15.  The real morphology of grain

    图  16  磨粒仿真形貌

    Figure  16.  Simulated grain morphology

    图  17  磨粒重构过程

    Figure  17.  Reconstruction process of grain

    图  18  单颗磨粒切削仿真模型

    Figure  18.  Single abrasive cutting simulation model

    图  19  切向切削力

    Figure  19.  Tangential cutting force

    图  20  法向切削力

    Figure  20.  Normal cutting force

    表  1  试验参数

    Table  1.   Test parameters

    参数 取值
    CBN磨粒基本颗粒尺寸 D / μm 400~425
    主轴转速 n / (r·min−1) 2 000
    轴向进给速度 va / (mm·min−1) 6
    切削深度 ap / μm 2
    超声振幅 A / μm 4
    超声频率 f / kHz 21.5
    下载: 导出CSV

    表  2  材料物理性质

    Table  2.   Material physical properties

    材料 密度 ρ / (kg·m−3) 弹性模量 E / GPa 泊松比 υ
    CBN 3 480 710 0.20
    4Cr13 7 800 200 0.24
    下载: 导出CSV

    表  3  4Cr13的Johnson-Cook模型参数

    Table  3.   Johnson-Cook model parameters of 4Cr13

    参数 取值
    屈服应力参数 A1 / MPa 600
    硬化系数 B / MPa 221
    应变率系数 C 0.023
    硬化指数 n1 0.6
    温度系数 m 1
    下载: 导出CSV
  • [1] YANG C, SU H, GAO S, et al. Characterization and life prediction of single-pass honing tool for fuel injection nozzle [J]. Chinese Journal of Aeronautics,2021,34(4):225-240. doi: 10.1016/j.cja.2020.08.008
    [2] 陈凯, 杨长勇, 高绍武, 等. 单颗CBN磨粒微切削硬质合金YG8磨损研究 [J]. 机械制造与自动化,2021,50(1):25-28. doi: 10.19344/j.cnki.issn1671-5276.2021.01.007

    CHEN Kai, YANG Changyong, GAO Shaowu, et al. Study on wear of single CBN grain micro-cutting YG8 cemented carbide [J]. Machine Building and Automation,2021,50(1):25-28. doi: 10.19344/j.cnki.issn1671-5276.2021.01.007
    [3] 刘伟, 邓朝晖, 万林林, 等. 单颗金刚石磨粒切削氮化硅陶瓷仿真与试验研究 [J]. 机械工程学报,2015,51(21):191-198. doi: 10.3901/JME.2015.21.191

    LIU Wei, DENG Zhaohui, WAN Linlin, et al. Simulation and experiment study for silicon nitride cutting with single diamond grain [J]. Journal of Mechanical Engineering,2015,51(21):191-198. doi: 10.3901/JME.2015.21.191
    [4] 程强, 梁国星, 郝建宇, 等. 高速磨削Inconel718单颗PCBN磨粒磨损研究 [J]. 机电工程,2020,37(10):1225-1230. doi: 10.3969/j.issn.1001-4551.2020.10.017

    CHEN Qiang, LIANG Guoxing, HAO Jianyu, et al. Wear study of single PCBN abrasive in high speed grinding Inconel718 [J]. Journal of Mechanical and Electrical Engineering,2020,37(10):1225-1230. doi: 10.3969/j.issn.1001-4551.2020.10.017
    [5] 余剑武, 肖清, 罗红, 等. 单颗立方氮化硼磨料磨损过程试验研究与分析 [J]. 兵器材料科学与工程,2017,40(3):16-20. doi: 10.14024/j.cnki.1004-244x.20170503.001

    YU Jianwu, XIAO Qing, LUO Hong, et al. Experimental research and analysis on CBN wear process based on single abrasive grinding [J]. Ordnance Material Science and Engineering,2017,40(3):16-20. doi: 10.14024/j.cnki.1004-244x.20170503.001
    [6] LI B, YIN J, ZHU Y, et al. Grain wear evolution of cubic boron nitride abrasives during single grain grinding of powder metallurgy superalloy FGH96 [J]. Ceramics International,2021,47(2):2508-2516. doi: 10.1016/j.ceramint.2020.09.094
    [7] WANG J, YU T, DING W, et al. Wear evolution and stress distribution of single CBN super abrasive grain in high-speed grinding [J]. Precision Engineering,2018,54:70-80.
    [8] 王艳凤. 超声辅助单颗磨粒高速磨削试验研究 [D]. 焦作: 河南理工大学, 2015.

    WANG Yanfeng. The experimental study on high speed grinding of the single grain with ultrasonic-assisted [D]. Jiaozuo: Henan Polytechnic University, 2015.
    [9] 向道辉, 周直昆, 刘中云, 等. 超声辅助磨削球墨铸铁表面形貌及磨粒磨损研究 [J]. 河南理工大学学报(自然科学版),2018,37(3):86-92. doi: 10.16186/j.cnki.1673-9787.2018.03.12

    XIANG Daohui, ZHOU Zhikun, LIU Zhongyun, et al. Study on nodular cast iron surface topography and abrasive wear in ultrasonic vibration assisted grinding [J]. Journal of Henan Polytechnic University (Natural Science),2018,37(3):86-92. doi: 10.16186/j.cnki.1673-9787.2018.03.12
    [10] ZHENG F, KANG R, DONG Z, et al. A theoretical and experimental investigation on ultrasonic assisted grinding from the single-grain aspect [J]. International Journal of Mechanical Sciences,2018,148:667-675. doi: 10.1016/j.ijmecsci.2018.09.026
    [11] 刘伟, 刘仁通, 邓朝晖, 等. 单颗磨粒磨削仿真研究进展 [J]. 宇航材料工艺,2018,48(4):1-8. doi: 10.12044/j.issn.1007-2330.2018.04.001

    LIU Wei, LIU Rentong, DENG Zhaohui, et al. Research progress on single abrasive grain grinding simulation [J]. Aerospace Materials and Technology,2018,48(4):1-8. doi: 10.12044/j.issn.1007-2330.2018.04.001
    [12] BERGS T, OHLERT M, PRINZ S, et al. Modeling of the fracture behavior of CBN grains during single grain dressing using FEM [J]. Procedia CIRP,2020,93:1514-1519. doi: 10.1016/j.procir.2020.03.021
    [13] 马国峰. 超声辅助单颗粒磨削力及去除机理研究 [D]. 焦作: 河南理工大学, 2016.

    MA Guofeng. Research on grinding force and removal mechanism of single grain in ultrasonic vibration assisted grinding [D]. Jiaozuo: Henan Polytechnic University, 2016.
    [14] 陈日曜. 金属切削原理 [M]. 北京: 机械工业出版社, 2002.

    CHEN Riyao. Metal cutting principle [M]. Beijing: China Machine Press, 2002.
    [15] CHANDRA N, RAHMAN M. Effect of machining parameters in ultrasonic vibration cutting [J]. International Journal of Machine Tools and Manufacture,2008,48(9):965-974. doi: 10.1016/j.ijmachtools.2008.01.013
    [16] ZHANG L, LI P, TANG S, et al. Mechanical behaviors analysis and Johnson-Cook model establishment of 4Cr13 stainless steel [J]. Key Engineering Materials, 2014, 2750.
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  166
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 修回日期:  2022-06-17
  • 录用日期:  2022-07-12
  • 网络出版日期:  2022-10-20
  • 刊出日期:  2023-01-12

目录

    /

    返回文章
    返回