CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气压熔渗法制备高导热金刚石/Cu–B合金复合材料

康翱龙 康惠元 焦增凯 王熹 周科朝 马莉 邓泽军 王一佳 余志明 魏秋平

康翱龙, 康惠元, 焦增凯, 王熹, 周科朝, 马莉, 邓泽军, 王一佳, 余志明, 魏秋平. 气压熔渗法制备高导热金刚石/Cu–B合金复合材料[J]. 金刚石与磨料磨具工程, 2022, 42(6): 667-675. doi: 10.13394/j.cnki.jgszz.2022.0017
引用本文: 康翱龙, 康惠元, 焦增凯, 王熹, 周科朝, 马莉, 邓泽军, 王一佳, 余志明, 魏秋平. 气压熔渗法制备高导热金刚石/Cu–B合金复合材料[J]. 金刚石与磨料磨具工程, 2022, 42(6): 667-675. doi: 10.13394/j.cnki.jgszz.2022.0017
KANG Aolong, KANG Huiyuan, JIAO Zengkai, WANG Xi, ZHOU Kechao, MA Li, DENG Zejun, WANG Yijia, YU Zhiming, WEI Qiuping. Preparation of high thermal conductivity diamond/Cu–B alloy composites by gas pressure infiltration method[J]. Diamond & Abrasives Engineering, 2022, 42(6): 667-675. doi: 10.13394/j.cnki.jgszz.2022.0017
Citation: KANG Aolong, KANG Huiyuan, JIAO Zengkai, WANG Xi, ZHOU Kechao, MA Li, DENG Zejun, WANG Yijia, YU Zhiming, WEI Qiuping. Preparation of high thermal conductivity diamond/Cu–B alloy composites by gas pressure infiltration method[J]. Diamond & Abrasives Engineering, 2022, 42(6): 667-675. doi: 10.13394/j.cnki.jgszz.2022.0017

气压熔渗法制备高导热金刚石/Cu–B合金复合材料

doi: 10.13394/j.cnki.jgszz.2022.0017
基金项目: 国家十四五重点研究发展计划(2021YFB3701800);国家自然科学基金(52071345,51874370,51601226);广东省十三五重点研究开发项目(2020B01085001);湖南省高新技术产业科技创新引领计划(2022GK4037,2022GK4047)。
详细信息
    通讯作者:

    魏秋平,男,1980年生,博士、教授。主要研究方向:薄膜材料和表面改性技术。E-mail: qiupwei@csu.edu.cn

  • 中图分类号: TQ164

Preparation of high thermal conductivity diamond/Cu–B alloy composites by gas pressure infiltration method

  • 摘要: 以硼质量分数为0.5%的Cu–B合金为金属基体以及平均粒径为500 μm的金刚石颗粒为增强体,采用气压熔渗法制备金刚石/Cu–B合金复合材料,研究气压参数对其组织结构和热物理性能的影响规律。结果表明:随着气压升高,金刚石与Cu–B合金之间的界面结合效果、导热性能均增强,热膨胀系数减小;当气压为10 MPa时,其界面结合效果最优,界面处生成的碳化物层将金刚石完全覆盖,且100 ℃时的样品热导率为680.3 W/(m·K),热膨胀系数为5.038×10−6 K−1,满足电子封装材料的热膨胀系数要求。

     

  • 图  1  颗粒金刚石与金属接触示意图

    Figure  1.  Schematic diagram of contact between granular diamond and metal

    图  2  不同温度下铜及Cu–B合金浸润金刚石的情况

    Figure  2.  Infiltration of copper and Cu–B alloy into diamond at different temperatures

    图  3  金属基体无压浸润金刚石的形貌

    Figure  3.  Morphologies of pressureless infiltrated diamond on metal matrix

    图  4  不同气压下制备的复合材料样品微观形貌

    Figure  4.  Microstructures of composite samples prepared at different gas pressures

    图  5  不同气压下样品电化学腐蚀后的表面形貌及能谱图

    Figure  5.  Surface morphologies and EDS of samples after electrochemical corrosion at different pressures

    图  6  不同气压下制备的样品X射线衍射图谱

    Figure  6.  XRD patterns of samples prepared at different pressures

    图  7  不同气压下制备的样品电化学腐蚀后的金刚石颗粒X射线衍射图谱

    Figure  7.  XRD patterns of diamond particles after electrochemical corrosion of samples prepared at different pressures

    图  8  4种金刚石颗粒表面的Raman光谱

    Figure  8.  Raman spectra of four kinds of diamond particle surfaces

    图  9  不同气压下制备的样品热膨胀系数

    Figure  9.  Thermal expansion coefficients of samples prepared at different pressures

    图  10  红外热成像原理示意图

    Figure  10.  Schematic diagram of infrared thermal imaging principle

    图  11  Cu–B合金、6 MPa及10 MPa下样品的红外热成像图谱

    Figure  11.  Infrared thermographies of Cu–B alloy and samples at 6 MPa and 10 MPa

    图  12  不同样品的表面温度与时间关系曲线

    Figure  12.  Surface temperature versus time curves of different samples

    表  1  金刚石/Cu–B复合材料样品的性能参数

    Table  1.   Performance parameters of diamond/Cu–B composite samples

    制备气压
    p / MPa
    密度
    ρ / (g·cm−3)
    致密度
    φ / %
    金刚石体积分数
    ω / %
    比热容
    c / [J·(g·K)−1]
    热扩散系数
    α2 / (mm2·s−1)
    热导率
    $ \lambda $ / [W·(m·K)−1]
    6 5.53 94.70 54.4 0.429 272.8 648.2
    10 5.61 95.24 53.2 0.428 283.1 680.3
    下载: 导出CSV
  • [1] RYELANDT S, MERTENS A, DELANNAY F. Al/stainless-invar composites with tailored anisotropy for thermal management in light weight electronic packaging [J]. Materials & Design,2015,85:318-323.
    [2] GU X, WANG D, WANG Y, et al. Mechanical property of alumina ceramic AgCuTi/Kovar alloy brazed joint [J]. Materials Science and Technology,2007,15(3):366-369.
    [3] 胡海亭, 胡明, 孟君晟. 热压对喷涂SiCp/Al复合材料组织和热性能的影响 [J]. 表面技术,2009(5):6-8.

    HU Haiting, HU Ming, MENG Junsheng. Effects of hot pressed treatment on microstructure and thermal properties of sprayed SiCp/Al composites [J]. Surface Technology,2009(5):6-8.
    [4] 邓安强, 樊静波, 谭占秋, 等. 金刚石/铜复合材料在电子封装材料领域的研究进展 [J]. 金刚石与磨料磨具工程,2010,30(5):56-61.

    DENG Anqiang, FAN Jingbo, TAN Zhanqiu, et al. Research progress of diamond/Cu composite material for electronic packaging [J]. Diamond & Abrasives Engineering,2010,30(5):56-61.
    [5] 李志强, 谭占秋, 范根莲, 等. 高效热管理用金属基复合材料研究进展 [J]. 中国材料进展,2013,32(7):431-440.

    LI Zhiqiang, TAN Zhanqiu, FAN Genlian, et al. Progress of metal matrix composites for efficient thermal management applications [J]. Materials China,2013,32(7):431-440.
    [6] 安俊杰, 魏秋平, 叶文涛, 等. 泡沫铜表面改性对化学气相沉积高质量泡沫金刚石的影响 [J]. 表面技术,2020,49(3):97-105.

    AN Junjie, WEI Qiuping, YE Wentao, et al. High quality diamond films deposited on surface modified Cu foams by chemical vapor deposition method [J]. Surface Technology,2020,49(3):97-105.
    [7] AZINA C, CORNU I, SILVAIN J, et al. Effect of titanium and zirconium carbide interphases on the thermal conductivity and interfacial heat transfers in copper/diamond composite materials [J]. AIP Advances,2019,9(5):055315. doi: 10.1063/1.5052307
    [8] WANG L, LI J, CHE Z, et al. Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites [J]. Journal of Alloys and Compounds,2018,749:1098-1105. doi: 10.1016/j.jallcom.2018.03.241
    [9] SANG J, YANG W, ZHU J, et al. Regulating interface adhesion and enhancing thermal conductivity of diamond/copper composites by ion beam bombardment and following surface metallization pretreatment [J]. Journal of Alloys and Compounds,2018,740:1060-1066. doi: 10.1016/j.jallcom.2018.01.078
    [10] ZHAO C, WANG J. Enhanced mechanical properties in diamond/Cu composites with chromium carbide coating for structural applications [J]. Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing,2013,588:221-227. doi: 10.1016/j.msea.2013.09.034
    [11] WANG L, LI J, CATALANO M, et al. Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer [J]. Composites Part A: Applied Science and Manufacturing,2018,113:76-82. doi: 10.1016/j.compositesa.2018.07.023
    [12] BAI G, WANG L, ZHANG Y, et al. Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix [J]. Materials Characterization,2019,152:265-275. doi: 10.1016/j.matchar.2019.04.015
    [13] HE J, WANG X, ZHANG Y, et al. Thermal conductivity of Cu–Zr/diamond composites produced by high temperature-high pressure method [J]. Composites Part B: Engineering,2015,68:22-26. doi: 10.1016/j.compositesb.2014.08.023
    [14] 张晓宇, 蔺伟康, 许旻, 等. 添加稀土Nd改善金刚石/铜复合材料界面 [J]. 表面技术,2018,47(5):27-32.

    ZHANG Xiaoyu, LIN Weikang, XU Min, et al. Adding rare earth Nd to improve the interface of diamond/copper composites [J]. Surface Technology,2018,47(5):27-32.
    [15] ZHANG X, XU M, CAO S, et al. Enhanced thermal conductivity of diamond/copper composite fabricated through doping with rare-earth oxide Sc2O3 [J]. Diamond and Related Materials,2020,104:107755. doi: 10.1016/j.diamond.2020.107755
    [16] ZHANG H, LIU Y, ZHANG F, et al. Hot deformation behavior and processing maps of diamond/Cu composites [J]. Metallurgical & Materials Transactions A,2018,49(6):1-11.
    [17] YANG L, SUN L, BAI W, et al. Thermal conductivity of Cu-Ti/diamond composites via spark plasma sintering [J]. Diamond and Related Materials,2019,94:37-42. doi: 10.1016/j.diamond.2019.02.014
    [18] RUCH R W, BEFFORT O, KLEINER S, et al. Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity [J]. Composites Science and Technology,2006,66(15):2677-2685.
    [19] CHEN H, JIA C, LI S, et al. Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique [J]. International Journal of Minerals Metallurgy and Materials,2012,19(4):364-371. doi: 10.1007/s12613-012-0565-7
    [20] BAI G, LI N, WANG X, et al. High thermal conductivity of Cu-B/diamond composites prepared by gas pressure infiltration [J]. Journal of Alloys and Compounds,2018,735:1648-1653. doi: 10.1016/j.jallcom.2017.11.273
    [21] SINHA V, SPOWART J. Influence of interfacial carbide layer characteristics on thermal properties of copper-diamond composites [J]. Journal of Materials Science,2013,48(3):1330-1341. doi: 10.1007/s10853-012-6878-0
    [22] CHENG Y, BIAN L, WANG Y, et al. Influences of reinforcing particle and interface bonding strength on material properties of Mg/nano-particle composites [J]. International Journal of Solids and Structures,2014,51(18):3168-3176. doi: 10.1016/j.ijsolstr.2014.05.007
    [23] 赵玉涛, 戴起勋, 陈刚. 金属基复合材料 [M]. 北京: 机械工业出版社, 2007.

    ZHAO Yutao, DAI Qixun, CHEN Gang. Metal matrix composites [M]. Beijing: China Machine Press, 2007.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  113
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-05-12
  • 刊出日期:  2023-01-12

目录

    /

    返回文章
    返回