CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼掺杂梯度对硬质合金金刚石涂层的影响

夏鑫 余寒 花腾宇 马莉 陈玉柏 汤昌仁 梁瑜 王一佳 邓泽军 周科朝 余志明 魏秋平

夏鑫, 余寒, 花腾宇, 马莉, 陈玉柏, 汤昌仁, 梁瑜, 王一佳, 邓泽军, 周科朝, 余志明, 魏秋平. 硼掺杂梯度对硬质合金金刚石涂层的影响[J]. 金刚石与磨料磨具工程, 2022, 42(6): 676-684. doi: 10.13394/j.cnki.jgszz.2022.0014
引用本文: 夏鑫, 余寒, 花腾宇, 马莉, 陈玉柏, 汤昌仁, 梁瑜, 王一佳, 邓泽军, 周科朝, 余志明, 魏秋平. 硼掺杂梯度对硬质合金金刚石涂层的影响[J]. 金刚石与磨料磨具工程, 2022, 42(6): 676-684. doi: 10.13394/j.cnki.jgszz.2022.0014
XIA Xin, YU Han, HUA Tengyu, MA Li, CHEN Yubai, TANG Changren, LIANG Yu, WANG Yijia, DENG Zejun, ZHOU Kezhao, YU Zhiming, WEI Qiuping. Effect of boron doping gradient on cemented carbide diamond coatings[J]. Diamond & Abrasives Engineering, 2022, 42(6): 676-684. doi: 10.13394/j.cnki.jgszz.2022.0014
Citation: XIA Xin, YU Han, HUA Tengyu, MA Li, CHEN Yubai, TANG Changren, LIANG Yu, WANG Yijia, DENG Zejun, ZHOU Kezhao, YU Zhiming, WEI Qiuping. Effect of boron doping gradient on cemented carbide diamond coatings[J]. Diamond & Abrasives Engineering, 2022, 42(6): 676-684. doi: 10.13394/j.cnki.jgszz.2022.0014

硼掺杂梯度对硬质合金金刚石涂层的影响

doi: 10.13394/j.cnki.jgszz.2022.0014
基金项目: 国家十四五重点研究发展计划(2021YFB3701800);国家自然科学基金(52071345、 51874370、51601226);广东省十三五重点研究开发项目(2020B01085001);湖南省高新技术产业科技创新引领计划(2022GK4037、2022GK4047)。
详细信息
    通讯作者:

    马莉,女,1982年生,博士、副教授。主要研究方向:薄膜材料和材料表面改性技术。E-mail: marycsupm@csu.edu.cn

  • 中图分类号: TQ164

Effect of boron doping gradient on cemented carbide diamond coatings

  • 摘要: 为提高硬质合金刀具上金刚石涂层的结合性能,采用热丝化学气相沉积法在YG 8硬质合金基体上沉积高、低梯度硼掺杂微米金刚石(high gradient boron-doped micron crystal diamond, HGBMCD;low gradient boron-doped micron crystal diamond, LGBMCD)涂层和无硼掺杂的微米金刚石(micrometer crystal diamond, MCD)涂层,探究沉积过程中硼掺杂浓度的梯度大小对金刚石涂层的形核和生长性能的影响。结果表明:随着硼的掺入,金刚石的形核密度增大,生长6 h后的金刚石晶粒更均匀细小,其中LGBMCD的晶粒尺寸大部分在2~3 μm;而石墨相在梯度硼掺杂金刚石涂层中的生长会被抑制,HGBMCD中IDia/IG高达14.65,残余应力仅为–0.255 GPa,且Co2B、CoB等硼钴化合物含量随硼掺杂梯度的减小而增大;金刚石涂层的残余应力因硼的掺入逐渐从压应力转变成拉应力,残余应力大小先减小后增大;洛氏压痕显示,随着硼的掺入,金刚石涂层的结合性能提高,LGBMCD的结合性能最好,在1 470 N下可达到HF2级。因此,适当的硼掺杂梯度有利于提高金刚石涂层的质量和结合性能。

     

  • 图  1  梯度硼掺杂金刚石涂层的B/C随时间变化图

    Figure  1.  Variation of B/C ratio with time for gradient boron-doped diamond coatings

    图  2  各试样的形核表面形貌

    Figure  2.  Surface morphology of each sample nucleation

    图  3  形核30 min后硼掺杂金刚石的能谱形貌信息

    Figure  3.  Energy dispersive spectroscopy results of boron-doped diamond after 30 min nucleation

    图  4  生长6 h后金刚石涂层的表面形貌

    Figure  4.  Surface morphology of diamond coating after 6 h growth

    图  5  生长6 h后金刚石涂层的XRD图

    Figure  5.  XRD patterns of diamond coatings after 6 h growth

    图  6  生长6 h后梯度硼掺杂金刚石涂层的截面图和能谱线扫描图

    Figure  6.  Cross-section and energy dispersive spectroscopy line scan of gradient boron-doped diamond coating after 6 h growth

    图  7  金刚石形核30 min的高斯拟合拉曼曲线及XRD光谱

    Figure  7.  Raman spectrum of MCD and HGBMCD/LGBMCD after nucleation for 30 min overlapped with Gaussian fitted curves, and the corresponding XRD spectrum of HGBMCD/LGBMCD

    图  8  生长6 h后梯度硼掺杂金刚石涂层的高斯拟合拉曼光谱图

    Figure  8.  Raman spectrum of gradient boron-doped diamond coatings after six-hour growth overlapped with Gaussian fitted curves

    图  9  生长6 h后梯度硼掺杂金刚石涂层在不同压力下的洛氏压痕

    Figure  9.  Rockwell indentation tests of diamond coatings under different pressures after six-hour growth

    表  1  生长6 h后梯度硼掺杂金刚石涂层的拉曼信息

    Table  1.   Raman information of gradient boron-doped diamond coatings after 6 h of growth

    样品 金刚石峰
    υ /(cm−1
    残余应力
    σ / GPa
    半峰宽
    FWHM /(cm−1
    IDia / IG
    MCD 1 337.13 −2.900 12.84 11.33
    HGBMCD 1 332.45 −0.255 13.67 14.65
    LGBMCD 1 328.90 1.750 17.42 5.46
    下载: 导出CSV
  • [1] WEN C L, WU Y S, CHANG H C, et al. Enhancing the adhesion of diamond films on cobalt-cemented tungsten carbide substrate using tungsten particles via MPCVD system [J]. Journal of Alloys & Compounds,2011,509(12):4433-4438.
    [2] WANG L, WEI Q P, YU Z M, et al. Influence of methane on hot filament CVD diamond films deposited on high-speed steel substrates with WC-Co interlayer [J]. Journal of Central South University of Technology,2011,18(6):1819-1824. doi: 10.1007/s11771-011-0908-y
    [3] WANG X C, WANG C C, HE W K, et al. Co evolutions for WC–Co with different Co contents during pretreatment and HFCVD diamond film growth processes [J]. Transactions of Nonferrous Metals Society of China,2018,28(3):469-486. doi: 10.1016/S1003-6326(18)64680-1
    [4] 熊超, 李烈军, 苏东艺, 等. 预处理对金刚石薄膜质量及结合力的影响 [J]. 表面技术,2018,47(1):203−210. doi: 10.16490/j.cnki.issn.1001-3660.2018.01.032

    XIONG Chao, LI Liejun, SU Dongyi, et al. Effects of pretreatment on quality and adhesion of diamond films on cemented carbides [J]. Surface Technology,2018,47(1):203−210. doi: 10.16490/j.cnki.issn.1001-3660.2018.01.032
    [5] SUN F H, ZHANG Z M, CHEN M, et al. Improvement of adhesive strength and surface roughness of diamond films on Co-cemented tungsten carbide tools [J]. Diamond & Related Materials,2003,12(3/4/5/6/7):711-718.
    [6] 赵齐, 代明江, 韦春贝, 等. 厚钛过渡层缓解铜基上热丝CVD金刚石薄膜内应力 [J]. 表面技术,2013,42(5):19−23. doi: 10.16490/j.cnki.issn.1001-3660.2013.05.003

    ZHAO Qi, DAI Mingjiang, WEI Chunbei, et al. Thick titanium interlayer remitting stress in diamond films deposited on copper substrate by hot filaments chemical vapor deposition [J]. Surface Technology,2013,42(5):19−23. doi: 10.16490/j.cnki.issn.1001-3660.2013.05.003
    [7] CHANDRAN M, HOFFMAN A. Diamond film deposition on WC–Co and steel substrates with a CrN interlayer for tribological applications [J]. Journal of Physics D: Applied Physics,2016,49(21):213002. doi: 10.1088/0022-3727/49/21/213002
    [8] WANG G, LU X, DING M, et al. Diamond coatin-gs deposited on cemented carbide substrates with SiC as interlayers: preparation and erosion resistance tests [J]. Diamond & Related Materials,2016,73:105-113.
    [9] WANG T, ZHANG S Q, JIANG C L, et al. TiB2 barrier interlayer approach for HFCVD diamond deposition onto cemented carbide tools [J]. Diamond & Related Materials,2018,83:126-133.
    [10] WEI Q P, YU Z M, MA L, et al. The effects of temperature on nanocrystalline diamond films deposited on WC–13 wt.% Co substrate with W–C gradient layer [J]. Applied Surface Science,2009,256(5):1322-1328. doi: 10.1016/j.apsusc.2009.06.091
    [11] BASTURK S, SENBABAOGLU F, ISLAM C, et al. Titanium machining with new plasma boronized cutting tools [J]. CIRP Annals - Manufacturing Technology,2010,59(1):101-104. doi: 10.1016/j.cirp.2010.03.095
    [12] WANG X, SHEN X, YANG G, et al. Evaluation of boron-doped-microcrystalline/nanocrystalline diamond composite coatings in drilling of CFRP [J]. Surface & Coatings Technology,2017,330:149-162.
    [13] WANG X, SHEN X, SUN F, et al. Influence of boron doping level on the basic mechanical properties and erosion behavior of boron-doped micro-crystalline diamond (BDMCD) film [J]. Diamond and Related Materials,2017,73:218-231. doi: 10.1016/j.diamond.2016.09.025
    [14] 许青波, 王传新, 王涛, 等. 硼掺杂金刚石薄膜的制备和性能研究 [J]. 金刚石与磨料磨具工程,2018,38(3):11-15, 20. doi: 10.13394/j.cnki.jgszz.2018.3.0003

    XU Qingbo, WANG Chuanxin, WANG Tao, et al. Preparation and properties of boron doped diamond films [J]. Diamond & Abrasives Engineering,2018,38(3):11-15, 20. doi: 10.13394/j.cnki.jgszz.2018.3.0003
    [15] 王文君, 汪建华, 王均涛, 等. 硼源浓度对钛基掺硼金刚石薄膜生长的影响 [J]. 表面技术,2011,40(2):4-7. doi: 10.3969/j.issn.1001-3660.2011.02.002

    WANG Wenjun, WANG Jianhua, WANG Juntao, et al. Influence of boron concentration on the growth of boron-doped diamond film on Ti substrate [J]. Surface Technology,2011,40(2):4-7. doi: 10.3969/j.issn.1001-3660.2011.02.002
    [16] WANG L, SHEN B, SUN F, et al. Effect of pressure on the growth of boron and nitrogen doped HFCVD diamond films on WC–Co substrate [J]. Surface and Interface Analysis,2015,47(5):572-586. doi: 10.1002/sia.5748
    [17] WANG L, LIU J, TANG T, et al. The abrasion resistance and adhesion of HFCVD boron and silicon-doped diamond films on WC–Co drawing dies [J]. Surface Review and Letters,2016,24(7):1750090.
    [18] LEI X L, WANG L, SHEN B, et al. Effect of boron-doped diamond interlayer on cutting performance of diamond coated micro drills for graphite machining [J]. Materials (Basel),2013,6(8):3128-3138. doi: 10.3390/ma6083128
    [19] RAMASUBRAMANIAN K, ARUNACHALAM N, RAMACHANDRA RAO M S. Investigation on tribological behaviour of boron doped diamond coated cemented tungsten carbide for cutting tool applications [J]. Surface and Coatings Technology,2017,332:332-340. doi: 10.1016/j.surfcoat.2017.06.090
    [20] KALSS W, BOHR S, HAUBNER R, et al. Influence of boron on diamond growth on WC-Co hardmetals [J]. International Journal of Refractory Metals and Hard Materials,1996,14(1/2/3):137-144. doi: 10.1016/0263-4368(96)83427-5
    [21] MAY P W, LUDLOW W J, HANNAWAY M, et al. Raman and conductivity studies of boron doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films [J]. Chemical Physics Letters,2007,446(1/2/3):103-108. doi: 10.1016/j.cplett.2007.08.018
    [22] MORTET V, GREGORA I, TAYLOR A, et al. New perspectives for heavily boron-doped diamond Raman spectrum analysis [J]. Carbon, 2020, 168: 319−327.
    [23] MURET M. Non-destructive determination of the boron concentration of heavily doped metallic diamond thin films from Raman spectroscopy [J]. Diamond and Related Materials,2004,13(2):282-286. doi: 10.1016/j.diamond.2003.10.051
    [24] MAY P W, LUDLOW W J, HANNAWAY M, et al. Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films [J]. Diamond & Related Materials,2008,17(2):105-117.
    [25] RALCHENKO V G, SMOLIN A A, PEREVERZEV V G, et al. Diamond deposition on steel with CVD tungsten intermediate layer [J]. Diamond & Related Materials,1995,4(5/6):754-758.
    [26] BUIJNSTERS J G, SHANKAR P, FLEISCHER W, et al. CVD diamond deposition on steel using arc-plated chromium nitride interlayers [J]. Diamond and Related Materials,2002,11(3/4/5/6):536-544. doi: 10.1016/S0925-9635(01)00628-8
    [27] LEI X L, SHEN B, CHEN S L, et al. Tribological behavior between micro- and nano-crystalline diamond films under dry sliding and water lubrication [J]. Tribology International,2014,69:118-127. doi: 10.1016/j.triboint.2013.09.012
    [28] 王志伟, 邹芹, 李艳国, 等. 硼及其协同掺杂金刚石薄膜的研究 [J]. 金刚石与磨料磨具工程,2019,39(4):1-8. doi: 10.13394/j.cnki.jgszz.2019.4.0001

    WANG Zhiwei, ZOU Qin, LI Yanguo, et al. Study on boron and its co-doped diamond films [J]. Diamond & Abrasives Engineering,2019,39(4):1-8. doi: 10.13394/j.cnki.jgszz.2019.4.0001
    [29] VIDAKIS N, ANTONIADIS A, BILALIS N. The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds [J]. Journal of Materials Processing Technology,2003,143/144(1):481-485.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  82
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 修回日期:  2022-05-19
  • 录用日期:  2022-05-25
  • 刊出日期:  2023-01-12

目录

    /

    返回文章
    返回